Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
2 |
|
wlklnwwlkln1 |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐺 ∈ USPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |
4 |
3
|
exlimdv |
⊢ ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) → 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |
5 |
|
wlklnwwlkln2 |
⊢ ( 𝐺 ∈ USPGraph → ( 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ) ) |
6 |
4 5
|
impbid |
⊢ ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝑓 ) = 𝑁 ) ↔ 𝑃 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |