| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 3 |  | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 0 ... ( ♯ ‘ 𝐹 ) )  =  dom  𝑃 ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 0 ... ( ♯ ‘ 𝐹 ) )  =  dom  𝑃 ) | 
						
							| 6 |  | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 7 |  | elnn0uz | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 |  | fzn0 | ⊢ ( ( 0 ... ( ♯ ‘ 𝐹 ) )  ≠  ∅  ↔  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 9 | 7 8 | sylbb2 | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 0 ... ( ♯ ‘ 𝐹 ) )  ≠  ∅ ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 0 ... ( ♯ ‘ 𝐹 ) )  ≠  ∅ ) | 
						
							| 11 | 5 10 | eqnetrrd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  dom  𝑃  ≠  ∅ ) | 
						
							| 12 |  | frel | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  Rel  𝑃 ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  Rel  𝑃 ) | 
						
							| 14 |  | reldm0 | ⊢ ( Rel  𝑃  →  ( 𝑃  =  ∅  ↔  dom  𝑃  =  ∅ ) ) | 
						
							| 15 | 14 | necon3bid | ⊢ ( Rel  𝑃  →  ( 𝑃  ≠  ∅  ↔  dom  𝑃  ≠  ∅ ) ) | 
						
							| 16 | 13 15 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝑃  ≠  ∅  ↔  dom  𝑃  ≠  ∅ ) ) | 
						
							| 17 | 11 16 | mpbird | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃  ≠  ∅ ) |