Description: A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 2-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkoniswlk | ⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
2 | 1 | wlkonprop | ⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
3 | simp31 | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
4 | 2 3 | syl | ⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |