Step |
Hyp |
Ref |
Expression |
1 |
|
wlkson.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
3 |
|
df-wlkson |
⊢ WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) |
4 |
1
|
wlkson |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) } ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝐵 ) } ) |
6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Walks ‘ 𝑔 ) = ( Walks ‘ 𝐺 ) ) |
9 |
8
|
breqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ↔ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) |
10 |
9
|
3anbi1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
11 |
3 5 7 7 10
|
bropfvvvv |
⊢ ( ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
12 |
2 2 11
|
mp2an |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
13 |
|
3anass |
⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ↔ ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
14 |
13
|
anbi1i |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
15 |
|
df-3an |
⊢ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
16 |
14 15
|
bitr4i |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
17 |
12 16
|
sylibr |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
18 |
1
|
iswlkon |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
19 |
18
|
3adantl1 |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
20 |
19
|
biimpd |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
21 |
20
|
imdistani |
⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) → ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
22 |
17 21
|
mpancom |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
23 |
|
df-3an |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ↔ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
24 |
22 23
|
sylibr |
⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |