Description: The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wlkp.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
3 | 1 2 | wlkprop | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
4 | 3 | simp2d | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |