Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
14 |
|
wlkp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
15 |
|
wlkp1.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
16 |
|
wlkp1.l |
⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) |
17 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
18 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
19 |
9
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
20 |
19
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) |
21 |
20
|
feq2i |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ) |
22 |
18 21
|
sylib |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ) |
23 |
8 17 22
|
3syl |
⊢ ( 𝜑 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ) |
24 |
9
|
fvexi |
⊢ 𝑁 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
26 |
|
snidg |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 } ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 } ) |
28 |
|
dmsnopg |
⊢ ( 𝐸 ∈ ( Edg ‘ 𝐺 ) → dom { 〈 𝐵 , 𝐸 〉 } = { 𝐵 } ) |
29 |
10 28
|
syl |
⊢ ( 𝜑 → dom { 〈 𝐵 , 𝐸 〉 } = { 𝐵 } ) |
30 |
27 29
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ dom { 〈 𝐵 , 𝐸 〉 } ) |
31 |
25 30
|
fsnd |
⊢ ( 𝜑 → { 〈 𝑁 , 𝐵 〉 } : { 𝑁 } ⟶ dom { 〈 𝐵 , 𝐸 〉 } ) |
32 |
|
fzodisjsn |
⊢ ( ( 0 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) |
34 |
|
fun |
⊢ ( ( ( 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ∧ { 〈 𝑁 , 𝐵 〉 } : { 𝑁 } ⟶ dom { 〈 𝐵 , 𝐸 〉 } ) ∧ ( ( 0 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) : ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ⟶ ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) |
35 |
23 31 33 34
|
syl21anc |
⊢ ( 𝜑 → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) : ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ⟶ ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) |
36 |
13
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
37 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
39 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
40 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
41 |
40
|
eqcoms |
⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
42 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
43 |
42
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
44 |
41 43
|
syl6bi |
⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) ) |
45 |
9 44
|
ax-mp |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
46 |
8 39 45
|
3syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
47 |
|
fzosplitsn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
49 |
38 48
|
eqtrd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
50 |
12
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
51 |
|
dmun |
⊢ dom ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) = ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) |
52 |
50 51
|
eqtrdi |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) |
53 |
36 49 52
|
feq123d |
⊢ ( 𝜑 → ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( iEdg ‘ 𝑆 ) ↔ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) : ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ⟶ ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) ) |
54 |
35 53
|
mpbird |
⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( iEdg ‘ 𝑆 ) ) |
55 |
|
iswrdb |
⊢ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ↔ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( iEdg ‘ 𝑆 ) ) |
56 |
54 55
|
sylibr |
⊢ ( 𝜑 → 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ) |
57 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
58 |
8 57
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
59 |
9
|
oveq2i |
⊢ ( 0 ... 𝑁 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) |
60 |
59
|
feq2i |
⊢ ( 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
61 |
58 60
|
sylibr |
⊢ ( 𝜑 → 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) |
62 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ V ) |
63 |
62 6
|
fsnd |
⊢ ( 𝜑 → { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } : { ( 𝑁 + 1 ) } ⟶ 𝑉 ) |
64 |
|
fzp1disj |
⊢ ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |
65 |
64
|
a1i |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) |
66 |
|
fun |
⊢ ( ( ( 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ∧ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } : { ( 𝑁 + 1 ) } ⟶ 𝑉 ) ∧ ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ ( 𝑉 ∪ 𝑉 ) ) |
67 |
61 63 65 66
|
syl21anc |
⊢ ( 𝜑 → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ ( 𝑉 ∪ 𝑉 ) ) |
68 |
|
fzsuc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
69 |
46 68
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
70 |
|
unidm |
⊢ ( 𝑉 ∪ 𝑉 ) = 𝑉 |
71 |
70
|
eqcomi |
⊢ 𝑉 = ( 𝑉 ∪ 𝑉 ) |
72 |
71
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( 𝑉 ∪ 𝑉 ) ) |
73 |
69 72
|
feq23d |
⊢ ( 𝜑 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( 0 ... ( 𝑁 + 1 ) ) ⟶ 𝑉 ↔ ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ ( 𝑉 ∪ 𝑉 ) ) ) |
74 |
67 73
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( 0 ... ( 𝑁 + 1 ) ) ⟶ 𝑉 ) |
75 |
14
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ) |
76 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... ( 𝑁 + 1 ) ) ) |
77 |
75 76 15
|
feq123d |
⊢ ( 𝜑 → ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( 0 ... ( 𝑁 + 1 ) ) ⟶ 𝑉 ) ) |
78 |
74 77
|
mpbird |
⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
wlkp1lem8 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem4 |
⊢ ( 𝜑 → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
81 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
82 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
83 |
81 82
|
iswlk |
⊢ ( ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) ) |
84 |
80 83
|
syl |
⊢ ( 𝜑 → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) ) |
85 |
56 78 79 84
|
mpbir3and |
⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |