Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
10 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
11 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
12 |
10 11
|
jca |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
13 |
|
fzp1nel |
⊢ ¬ ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
14 |
13
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ¬ ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
15 |
9
|
oveq1i |
⊢ ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
16 |
15
|
eleq1i |
⊢ ( ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
17 |
14 16
|
sylnibr |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ¬ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
18 |
|
eleq2 |
⊢ ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ( 𝑁 + 1 ) ∈ dom 𝑃 ↔ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
19 |
18
|
notbid |
⊢ ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ↔ ¬ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
20 |
17 19
|
syl5ibrcom |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) ) |
21 |
|
fdm |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
22 |
20 21
|
impel |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
23 |
8 12 22
|
3syl |
⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |