| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wlkp1.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							wlkp1.i | 
							⊢ 𝐼  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							wlkp1.f | 
							⊢ ( 𝜑  →  Fun  𝐼 )  | 
						
						
							| 4 | 
							
								
							 | 
							wlkp1.a | 
							⊢ ( 𝜑  →  𝐼  ∈  Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							wlkp1.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							wlkp1.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑉 )  | 
						
						
							| 7 | 
							
								
							 | 
							wlkp1.d | 
							⊢ ( 𝜑  →  ¬  𝐵  ∈  dom  𝐼 )  | 
						
						
							| 8 | 
							
								
							 | 
							wlkp1.w | 
							⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 9 | 
							
								
							 | 
							wlkp1.n | 
							⊢ 𝑁  =  ( ♯ ‘ 𝐹 )  | 
						
						
							| 10 | 
							
								
							 | 
							wlkcl | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								1
							 | 
							wlkp | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							jca | 
							⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fzp1nel | 
							⊢ ¬  ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ¬  ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 15 | 
							
								9
							 | 
							oveq1i | 
							⊢ ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  | 
						
						
							| 16 | 
							
								15
							 | 
							eleq1i | 
							⊢ ( ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) )  ↔  ( ( ♯ ‘ 𝐹 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							sylnibr | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ¬  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eleq2 | 
							⊢ ( dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑁  +  1 )  ∈  dom  𝑃  ↔  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							notbid | 
							⊢ ( dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ( ¬  ( 𝑁  +  1 )  ∈  dom  𝑃  ↔  ¬  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							syl5ibrcom | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) )  →  ¬  ( 𝑁  +  1 )  ∈  dom  𝑃 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  dom  𝑃  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							impel | 
							⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  →  ¬  ( 𝑁  +  1 )  ∈  dom  𝑃 )  | 
						
						
							| 23 | 
							
								8 12 22
							 | 
							3syl | 
							⊢ ( 𝜑  →  ¬  ( 𝑁  +  1 )  ∈  dom  𝑃 )  |