| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkp1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wlkp1.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | wlkp1.f | ⊢ ( 𝜑  →  Fun  𝐼 ) | 
						
							| 4 |  | wlkp1.a | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 5 |  | wlkp1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 6 |  | wlkp1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 7 |  | wlkp1.d | ⊢ ( 𝜑  →  ¬  𝐵  ∈  dom  𝐼 ) | 
						
							| 8 |  | wlkp1.w | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 9 |  | wlkp1.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐹 ) | 
						
							| 10 |  | wlkp1.e | ⊢ ( 𝜑  →  𝐸  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 11 |  | wlkp1.x | ⊢ ( 𝜑  →  { ( 𝑃 ‘ 𝑁 ) ,  𝐶 }  ⊆  𝐸 ) | 
						
							| 12 |  | wlkp1.u | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑆 )  =  ( 𝐼  ∪  { 〈 𝐵 ,  𝐸 〉 } ) ) | 
						
							| 13 |  | wlkp1.h | ⊢ 𝐻  =  ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) | 
						
							| 14 | 13 | fveq2i | ⊢ ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) ) ) | 
						
							| 16 |  | opex | ⊢ 〈 𝑁 ,  𝐵 〉  ∈  V | 
						
							| 17 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  Word  dom  𝐼 ) | 
						
							| 18 |  | wrdfin | ⊢ ( 𝐹  ∈  Word  dom  𝐼  →  𝐹  ∈  Fin ) | 
						
							| 19 | 8 17 18 | 3syl | ⊢ ( 𝜑  →  𝐹  ∈  Fin ) | 
						
							| 20 |  | fzonel | ⊢ ¬  ( ♯ ‘ 𝐹 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝐹 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ♯ ‘ 𝐹 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 23 | 22 | notbid | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( ¬  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ¬  ( ♯ ‘ 𝐹 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 24 | 21 23 | imbitrrid | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐹 )  →  ( 𝜑  →  ¬  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 25 | 9 24 | ax-mp | ⊢ ( 𝜑  →  ¬  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 26 |  | wrdfn | ⊢ ( 𝐹  ∈  Word  dom  𝐼  →  𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 27 |  | fnop | ⊢ ( ( 𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  〈 𝑁 ,  𝐵 〉  ∈  𝐹 )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐹  Fn  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 〈 𝑁 ,  𝐵 〉  ∈  𝐹  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 29 | 8 17 26 28 | 4syl | ⊢ ( 𝜑  →  ( 〈 𝑁 ,  𝐵 〉  ∈  𝐹  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 30 | 25 29 | mtod | ⊢ ( 𝜑  →  ¬  〈 𝑁 ,  𝐵 〉  ∈  𝐹 ) | 
						
							| 31 | 19 30 | jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  Fin  ∧  ¬  〈 𝑁 ,  𝐵 〉  ∈  𝐹 ) ) | 
						
							| 32 |  | hashunsng | ⊢ ( 〈 𝑁 ,  𝐵 〉  ∈  V  →  ( ( 𝐹  ∈  Fin  ∧  ¬  〈 𝑁 ,  𝐵 〉  ∈  𝐹 )  →  ( ♯ ‘ ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) ) | 
						
							| 33 | 16 31 32 | mpsyl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐹  ∪  { 〈 𝑁 ,  𝐵 〉 } ) )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) ) | 
						
							| 34 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 )  =  𝑁 | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐹 )  =  𝑁 ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐹 )  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 37 | 15 33 36 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( 𝑁  +  1 ) ) |