Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑁 ) ) |
16 |
9
|
fvexi |
⊢ 𝑁 ∈ V |
17 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
18 |
|
lencl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
19 |
|
wrddm |
⊢ ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
20 |
|
fzonel |
⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
21 |
9
|
a1i |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 = ( ♯ ‘ 𝐹 ) ) |
22 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
23 |
21 22
|
eleq12d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ∈ dom 𝐹 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
24 |
20 23
|
mtbiri |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ 𝑁 ∈ dom 𝐹 ) |
25 |
18 19 24
|
syl2anc |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹 ) |
26 |
8 17 25
|
3syl |
⊢ ( 𝜑 → ¬ 𝑁 ∈ dom 𝐹 ) |
27 |
|
fsnunfv |
⊢ ( ( 𝑁 ∈ V ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹 ) → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑁 ) = 𝐵 ) |
28 |
16 5 26 27
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑁 ) = 𝐵 ) |
29 |
15 28
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = 𝐵 ) |
30 |
12 29
|
fveq12d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |