Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
14 |
|
wlkp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
15 |
|
wlkp1.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
16 |
14
|
fveq1i |
⊢ ( 𝑄 ‘ 𝑘 ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ 𝑘 ) |
17 |
|
fzp1nel |
⊢ ¬ ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) |
18 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
19 |
18
|
notbid |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → ( ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ¬ ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
20 |
19
|
eqcoms |
⊢ ( ( 𝑁 + 1 ) = 𝑘 → ( ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ↔ ¬ ( 𝑁 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
21 |
17 20
|
mpbiri |
⊢ ( ( 𝑁 + 1 ) = 𝑘 → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) |
22 |
21
|
a1i |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) = 𝑘 → ¬ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) |
23 |
22
|
con2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑁 ) → ¬ ( 𝑁 + 1 ) = 𝑘 ) ) |
24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ¬ ( 𝑁 + 1 ) = 𝑘 ) |
25 |
24
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 + 1 ) ≠ 𝑘 ) |
26 |
|
fvunsn |
⊢ ( ( 𝑁 + 1 ) ≠ 𝑘 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
28 |
16 27
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |