Metamath Proof Explorer


Theorem wlkp1lem7

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v 𝑉 = ( Vtx ‘ 𝐺 )
wlkp1.i 𝐼 = ( iEdg ‘ 𝐺 )
wlkp1.f ( 𝜑 → Fun 𝐼 )
wlkp1.a ( 𝜑𝐼 ∈ Fin )
wlkp1.b ( 𝜑𝐵𝑊 )
wlkp1.c ( 𝜑𝐶𝑉 )
wlkp1.d ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 )
wlkp1.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
wlkp1.n 𝑁 = ( ♯ ‘ 𝐹 )
wlkp1.e ( 𝜑𝐸 ∈ ( Edg ‘ 𝐺 ) )
wlkp1.x ( 𝜑 → { ( 𝑃𝑁 ) , 𝐶 } ⊆ 𝐸 )
wlkp1.u ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) )
wlkp1.h 𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } )
wlkp1.q 𝑄 = ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } )
wlkp1.s ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
Assertion wlkp1lem7 ( 𝜑 → { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 wlkp1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 wlkp1.i 𝐼 = ( iEdg ‘ 𝐺 )
3 wlkp1.f ( 𝜑 → Fun 𝐼 )
4 wlkp1.a ( 𝜑𝐼 ∈ Fin )
5 wlkp1.b ( 𝜑𝐵𝑊 )
6 wlkp1.c ( 𝜑𝐶𝑉 )
7 wlkp1.d ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 )
8 wlkp1.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
9 wlkp1.n 𝑁 = ( ♯ ‘ 𝐹 )
10 wlkp1.e ( 𝜑𝐸 ∈ ( Edg ‘ 𝐺 ) )
11 wlkp1.x ( 𝜑 → { ( 𝑃𝑁 ) , 𝐶 } ⊆ 𝐸 )
12 wlkp1.u ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) )
13 wlkp1.h 𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } )
14 wlkp1.q 𝑄 = ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } )
15 wlkp1.s ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
16 fveq2 ( 𝑘 = 𝑁 → ( 𝑄𝑘 ) = ( 𝑄𝑁 ) )
17 fveq2 ( 𝑘 = 𝑁 → ( 𝑃𝑘 ) = ( 𝑃𝑁 ) )
18 16 17 eqeq12d ( 𝑘 = 𝑁 → ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ↔ ( 𝑄𝑁 ) = ( 𝑃𝑁 ) ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem5 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑄𝑘 ) = ( 𝑃𝑘 ) )
20 wlkcl ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
21 9 eqcomi ( ♯ ‘ 𝐹 ) = 𝑁
22 21 eleq1i ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝑁 ∈ ℕ0 )
23 nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
24 22 23 sylbb ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
25 8 20 24 3syl ( 𝜑𝑁 ∈ ( 0 ... 𝑁 ) )
26 18 19 25 rspcdva ( 𝜑 → ( 𝑄𝑁 ) = ( 𝑃𝑁 ) )
27 14 fveq1i ( 𝑄 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } ) ‘ ( 𝑁 + 1 ) )
28 ovex ( 𝑁 + 1 ) ∈ V
29 1 2 3 4 5 6 7 8 9 wlkp1lem1 ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 )
30 fsnunfv ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 )
31 28 6 29 30 mp3an2i ( 𝜑 → ( ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 )
32 27 31 syl5eq ( 𝜑 → ( 𝑄 ‘ ( 𝑁 + 1 ) ) = 𝐶 )
33 26 32 preq12d ( 𝜑 → { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } = { ( 𝑃𝑁 ) , 𝐶 } )
34 fsnunfv ( ( 𝐵𝑊𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) = 𝐸 )
35 5 10 7 34 syl3anc ( 𝜑 → ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) = 𝐸 )
36 11 33 35 3sstr4d ( 𝜑 → { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem3 ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) )
38 36 37 sseqtrrd ( 𝜑 → { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) )