Metamath Proof Explorer


Theorem wlkp1lem8

Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)

Ref Expression
Hypotheses wlkp1.v 𝑉 = ( Vtx ‘ 𝐺 )
wlkp1.i 𝐼 = ( iEdg ‘ 𝐺 )
wlkp1.f ( 𝜑 → Fun 𝐼 )
wlkp1.a ( 𝜑𝐼 ∈ Fin )
wlkp1.b ( 𝜑𝐵𝑊 )
wlkp1.c ( 𝜑𝐶𝑉 )
wlkp1.d ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 )
wlkp1.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
wlkp1.n 𝑁 = ( ♯ ‘ 𝐹 )
wlkp1.e ( 𝜑𝐸 ∈ ( Edg ‘ 𝐺 ) )
wlkp1.x ( 𝜑 → { ( 𝑃𝑁 ) , 𝐶 } ⊆ 𝐸 )
wlkp1.u ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) )
wlkp1.h 𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } )
wlkp1.q 𝑄 = ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } )
wlkp1.s ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
wlkp1.l ( ( 𝜑𝐶 = ( 𝑃𝑁 ) ) → 𝐸 = { 𝐶 } )
Assertion wlkp1lem8 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 wlkp1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 wlkp1.i 𝐼 = ( iEdg ‘ 𝐺 )
3 wlkp1.f ( 𝜑 → Fun 𝐼 )
4 wlkp1.a ( 𝜑𝐼 ∈ Fin )
5 wlkp1.b ( 𝜑𝐵𝑊 )
6 wlkp1.c ( 𝜑𝐶𝑉 )
7 wlkp1.d ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 )
8 wlkp1.w ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
9 wlkp1.n 𝑁 = ( ♯ ‘ 𝐹 )
10 wlkp1.e ( 𝜑𝐸 ∈ ( Edg ‘ 𝐺 ) )
11 wlkp1.x ( 𝜑 → { ( 𝑃𝑁 ) , 𝐶 } ⊆ 𝐸 )
12 wlkp1.u ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) )
13 wlkp1.h 𝐻 = ( 𝐹 ∪ { ⟨ 𝑁 , 𝐵 ⟩ } )
14 wlkp1.q 𝑄 = ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } )
15 wlkp1.s ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
16 wlkp1.l ( ( 𝜑𝐶 = ( 𝑃𝑁 ) ) → 𝐸 = { 𝐶 } )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem6 ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
18 10 elfvexd ( 𝜑𝐺 ∈ V )
19 1 2 iswlkg ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )
20 18 19 syl ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) ) )
21 9 eqcomi ( ♯ ‘ 𝐹 ) = 𝑁
22 21 oveq2i ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 )
23 22 raleqi ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
24 23 biimpi ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
25 24 3ad2ant3 ( ( 𝐹 ∈ Word dom 𝐼𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
26 20 25 syl6bi ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) )
27 8 26 mpd ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
28 eqeq12 ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) )
29 28 3adant3 ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) )
30 simp3 ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) )
31 simp1 ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( 𝑄𝑘 ) = ( 𝑃𝑘 ) )
32 31 sneqd ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → { ( 𝑄𝑘 ) } = { ( 𝑃𝑘 ) } )
33 30 32 eqeq12d ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } ↔ ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } ) )
34 preq12 ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } )
35 34 3adant3 ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } )
36 35 30 sseq12d ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ↔ { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) )
37 29 33 36 ifpbi123d ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) ) )
38 37 biimprd ( ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ) )
39 38 ral2imi ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄𝑘 ) = ( 𝑃𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝑘 ) ) = { ( 𝑃𝑘 ) } , { ( 𝑃𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ) )
40 17 27 39 sylc ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem3 ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) )
42 41 adantr ( ( 𝜑 ∧ ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) )
43 5 10 7 3jca ( 𝜑 → ( 𝐵𝑊𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) )
44 43 adantr ( ( 𝜑 ∧ ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( 𝐵𝑊𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) )
45 fsnunfv ( ( 𝐵𝑊𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) = 𝐸 )
46 44 45 syl ( ( 𝜑 ∧ ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝐼 ∪ { ⟨ 𝐵 , 𝐸 ⟩ } ) ‘ 𝐵 ) = 𝐸 )
47 fveq2 ( 𝑥 = 𝑁 → ( 𝑄𝑥 ) = ( 𝑄𝑁 ) )
48 fveq2 ( 𝑥 = 𝑁 → ( 𝑃𝑥 ) = ( 𝑃𝑁 ) )
49 47 48 eqeq12d ( 𝑥 = 𝑁 → ( ( 𝑄𝑥 ) = ( 𝑃𝑥 ) ↔ ( 𝑄𝑁 ) = ( 𝑃𝑁 ) ) )
50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem5 ( 𝜑 → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄𝑥 ) = ( 𝑃𝑥 ) )
51 2 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
52 lencl ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
53 9 eleq1i ( 𝑁 ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ0 )
54 elnn0uz ( 𝑁 ∈ ℕ0𝑁 ∈ ( ℤ ‘ 0 ) )
55 53 54 sylbb1 ( ( ♯ ‘ 𝐹 ) ∈ ℕ0𝑁 ∈ ( ℤ ‘ 0 ) )
56 52 55 syl ( 𝐹 ∈ Word dom 𝐼𝑁 ∈ ( ℤ ‘ 0 ) )
57 8 51 56 3syl ( 𝜑𝑁 ∈ ( ℤ ‘ 0 ) )
58 57 54 sylibr ( 𝜑𝑁 ∈ ℕ0 )
59 nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
60 58 59 sylib ( 𝜑𝑁 ∈ ( 0 ... 𝑁 ) )
61 49 50 60 rspcdva ( 𝜑 → ( 𝑄𝑁 ) = ( 𝑃𝑁 ) )
62 14 fveq1i ( 𝑄 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } ) ‘ ( 𝑁 + 1 ) )
63 ovex ( 𝑁 + 1 ) ∈ V
64 1 2 3 4 5 6 7 8 9 wlkp1lem1 ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 )
65 fsnunfv ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 )
66 63 6 64 65 mp3an2i ( 𝜑 → ( ( 𝑃 ∪ { ⟨ ( 𝑁 + 1 ) , 𝐶 ⟩ } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 )
67 62 66 syl5eq ( 𝜑 → ( 𝑄 ‘ ( 𝑁 + 1 ) ) = 𝐶 )
68 67 eqeq2d ( 𝜑 → ( ( 𝑃𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃𝑁 ) = 𝐶 ) )
69 eqcom ( ( 𝑃𝑁 ) = 𝐶𝐶 = ( 𝑃𝑁 ) )
70 68 69 bitrdi ( 𝜑 → ( ( 𝑃𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ 𝐶 = ( 𝑃𝑁 ) ) )
71 sneq ( 𝐶 = ( 𝑃𝑁 ) → { 𝐶 } = { ( 𝑃𝑁 ) } )
72 71 adantl ( ( 𝜑𝐶 = ( 𝑃𝑁 ) ) → { 𝐶 } = { ( 𝑃𝑁 ) } )
73 16 72 eqtrd ( ( 𝜑𝐶 = ( 𝑃𝑁 ) ) → 𝐸 = { ( 𝑃𝑁 ) } )
74 73 ex ( 𝜑 → ( 𝐶 = ( 𝑃𝑁 ) → 𝐸 = { ( 𝑃𝑁 ) } ) )
75 70 74 sylbid ( 𝜑 → ( ( 𝑃𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑃𝑁 ) } ) )
76 eqeq1 ( ( 𝑄𝑁 ) = ( 𝑃𝑁 ) → ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) )
77 sneq ( ( 𝑄𝑁 ) = ( 𝑃𝑁 ) → { ( 𝑄𝑁 ) } = { ( 𝑃𝑁 ) } )
78 77 eqeq2d ( ( 𝑄𝑁 ) = ( 𝑃𝑁 ) → ( 𝐸 = { ( 𝑄𝑁 ) } ↔ 𝐸 = { ( 𝑃𝑁 ) } ) )
79 76 78 imbi12d ( ( 𝑄𝑁 ) = ( 𝑃𝑁 ) → ( ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄𝑁 ) } ) ↔ ( ( 𝑃𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑃𝑁 ) } ) ) )
80 75 79 syl5ibrcom ( 𝜑 → ( ( 𝑄𝑁 ) = ( 𝑃𝑁 ) → ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄𝑁 ) } ) ) )
81 61 80 mpd ( 𝜑 → ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄𝑁 ) } ) )
82 81 imp ( ( 𝜑 ∧ ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → 𝐸 = { ( 𝑄𝑁 ) } )
83 42 46 82 3eqtrd ( ( 𝜑 ∧ ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } )
84 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 wlkp1lem7 ( 𝜑 → { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) )
85 84 adantr ( ( 𝜑 ∧ ¬ ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) )
86 83 85 ifpimpda ( 𝜑 → if- ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } , { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) ) )
87 1 2 3 4 5 6 7 8 9 10 11 12 13 wlkp1lem2 ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) )
88 87 oveq2d ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ ( 𝑁 + 1 ) ) )
89 fzosplitsn ( 𝑁 ∈ ( ℤ ‘ 0 ) → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) )
90 57 89 syl ( 𝜑 → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) )
91 88 90 eqtrd ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) )
92 91 raleqdv ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ) )
93 ralunb ( ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ) )
94 93 a1i ( 𝜑 → ( ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ) ) )
95 9 fvexi 𝑁 ∈ V
96 wkslem1 ( 𝑘 = 𝑁 → ( if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ if- ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } , { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) ) ) )
97 96 ralsng ( 𝑁 ∈ V → ( ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ if- ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } , { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) ) ) )
98 95 97 mp1i ( 𝜑 → ( ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ if- ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } , { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) ) ) )
99 98 anbi2d ( 𝜑 → ( ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ∧ if- ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } , { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) ) ) ) )
100 92 94 99 3bitrd ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) ∧ if- ( ( 𝑄𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) = { ( 𝑄𝑁 ) } , { ( 𝑄𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑁 ) ) ) ) ) )
101 40 86 100 mpbir2and ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) = { ( 𝑄𝑘 ) } , { ( 𝑄𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻𝑘 ) ) ) )