Step |
Hyp |
Ref |
Expression |
1 |
|
wlkp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
wlkp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
5 |
|
wlkp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
6 |
|
wlkp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
7 |
|
wlkp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
8 |
|
wlkp1.w |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
9 |
|
wlkp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
10 |
|
wlkp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
11 |
|
wlkp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
12 |
|
wlkp1.u |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
13 |
|
wlkp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
14 |
|
wlkp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
15 |
|
wlkp1.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
16 |
|
wlkp1.l |
⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem6 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
18 |
10
|
elfvexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
19 |
1 2
|
iswlkg |
⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
21 |
9
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
22 |
21
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) |
23 |
22
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
24 |
23
|
biimpi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
26 |
20 25
|
syl6bi |
⊢ ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
27 |
8 26
|
mpd |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
28 |
|
eqeq12 |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
30 |
|
simp3 |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
31 |
|
simp1 |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
32 |
31
|
sneqd |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑄 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) } ) |
33 |
30 32
|
eqeq12d |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
34 |
|
preq12 |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
35 |
34
|
3adant3 |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
36 |
35 30
|
sseq12d |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
37 |
29 33 36
|
ifpbi123d |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
38 |
37
|
biimprd |
⊢ ( ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
39 |
38
|
ral2imi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
40 |
17 27 39
|
sylc |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
41 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem3 |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
43 |
5 10 7
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) ) |
45 |
|
fsnunfv |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) |
46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) |
47 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑁 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑁 ) ) |
49 |
47 48
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem5 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
51 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
52 |
|
lencl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
53 |
9
|
eleq1i |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
54 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
55 |
53 54
|
sylbb1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
56 |
52 55
|
syl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
57 |
8 51 56
|
3syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
58 |
57 54
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
59 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
60 |
58 59
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
61 |
49 50 60
|
rspcdva |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) |
62 |
14
|
fveq1i |
⊢ ( 𝑄 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) |
63 |
|
ovex |
⊢ ( 𝑁 + 1 ) ∈ V |
64 |
1 2 3 4 5 6 7 8 9
|
wlkp1lem1 |
⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
65 |
|
fsnunfv |
⊢ ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
66 |
63 6 64 65
|
mp3an2i |
⊢ ( 𝜑 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
67 |
62 66
|
syl5eq |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
68 |
67
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 𝑁 ) = 𝐶 ) ) |
69 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝐶 ↔ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) |
70 |
68 69
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) ) |
71 |
|
sneq |
⊢ ( 𝐶 = ( 𝑃 ‘ 𝑁 ) → { 𝐶 } = { ( 𝑃 ‘ 𝑁 ) } ) |
72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → { 𝐶 } = { ( 𝑃 ‘ 𝑁 ) } ) |
73 |
16 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) |
74 |
73
|
ex |
⊢ ( 𝜑 → ( 𝐶 = ( 𝑃 ‘ 𝑁 ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) |
75 |
70 74
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) |
76 |
|
eqeq1 |
⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) ) |
77 |
|
sneq |
⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → { ( 𝑄 ‘ 𝑁 ) } = { ( 𝑃 ‘ 𝑁 ) } ) |
78 |
77
|
eqeq2d |
⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ↔ 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) |
79 |
76 78
|
imbi12d |
⊢ ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) ↔ ( ( 𝑃 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑃 ‘ 𝑁 ) } ) ) ) |
80 |
75 79
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) ) ) |
81 |
61 80
|
mpd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) ) |
82 |
81
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → 𝐸 = { ( 𝑄 ‘ 𝑁 ) } ) |
83 |
42 46 82
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } ) |
84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
wlkp1lem7 |
⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) ) → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
86 |
83 85
|
ifpimpda |
⊢ ( 𝜑 → if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) |
87 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
wlkp1lem2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
88 |
87
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
89 |
|
fzosplitsn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
90 |
57 89
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
91 |
88 90
|
eqtrd |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
92 |
91
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
93 |
|
ralunb |
⊢ ( ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
94 |
93
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) ) |
95 |
9
|
fvexi |
⊢ 𝑁 ∈ V |
96 |
|
wkslem1 |
⊢ ( 𝑘 = 𝑁 → ( if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) |
97 |
96
|
ralsng |
⊢ ( 𝑁 ∈ V → ( ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) |
98 |
95 97
|
mp1i |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) |
99 |
98
|
anbi2d |
⊢ ( 𝜑 → ( ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ ∀ 𝑘 ∈ { 𝑁 } if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) ) |
100 |
92 94 99
|
3bitrd |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ∧ if- ( ( 𝑄 ‘ 𝑁 ) = ( 𝑄 ‘ ( 𝑁 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = { ( 𝑄 ‘ 𝑁 ) } , { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) ) ) ) |
101 |
40 86 100
|
mpbir2and |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |