Metamath Proof Explorer


Theorem wlkpvtx

Description: A walk connects vertices. (Contributed by AV, 22-Feb-2021)

Ref Expression
Hypothesis wlkpvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion wlkpvtx ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃𝑁 ) ∈ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 wlkpvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 wlkp ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )
3 ffvelrn ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃𝑁 ) ∈ 𝑉 )
4 3 ex ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃𝑁 ) ∈ 𝑉 ) )
5 2 4 syl ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃𝑁 ) ∈ 𝑉 ) )