Description: A walk connects vertices. (Contributed by AV, 22-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wlkpvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | wlkpvtx | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkpvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
3 | ffvelrn | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) | |
4 | 3 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |
5 | 2 4 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |