Description: A walk connects vertices. (Contributed by AV, 22-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkpvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | wlkpvtx | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkpvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 3 | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) | |
| 4 | 3 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |