Step |
Hyp |
Ref |
Expression |
1 |
|
wlkres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkres.d |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
4 |
|
wlkres.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
wlkres.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
6 |
|
wlkres.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
7 |
|
wlkres.h |
⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) |
8 |
|
wlkres.q |
⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) |
9 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
10 |
|
pfxwrdsymb |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 prefix 𝑁 ) ∈ Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → ( 𝐹 prefix 𝑁 ) ∈ Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
12 |
7
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝐹 prefix 𝑁 ) ) |
13 |
6
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
14 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
15 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
16 |
|
fimass |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
17 |
14 15 16
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
18 |
|
ssdmres |
⊢ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
21 |
|
wrdeq |
⊢ ( dom ( iEdg ‘ 𝑆 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) → Word dom ( iEdg ‘ 𝑆 ) = Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → Word dom ( iEdg ‘ 𝑆 ) = Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
23 |
11 12 22
|
3eltr4d |
⊢ ( 𝜑 → 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ) |
24 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
25 |
3 24
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
26 |
5
|
feq3d |
⊢ ( 𝜑 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
27 |
25 26
|
mpbird |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
28 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
29 |
28 4
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
30 |
|
elfzuz3 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
31 |
|
fzss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
32 |
29 30 31
|
3syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
33 |
27 32
|
fssresd |
⊢ ( 𝜑 → ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... 𝑁 ) ⟶ ( Vtx ‘ 𝑆 ) ) |
34 |
7
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) |
35 |
|
pfxlen |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
36 |
14 29 35
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
37 |
34 36
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... 𝑁 ) ) |
39 |
38
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... 𝑁 ) ⟶ ( Vtx ‘ 𝑆 ) ) ) |
40 |
33 39
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
41 |
8
|
feq1i |
⊢ ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
42 |
40 41
|
sylibr |
⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
43 |
1 2
|
wlkprop |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
44 |
3 43
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
46 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
47 |
46
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ↔ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
48 |
8
|
fveq1i |
⊢ ( 𝑄 ‘ 𝑥 ) = ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ 𝑥 ) |
49 |
|
fzossfz |
⊢ ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
50 |
49
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
51 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ... 𝑁 ) ) |
52 |
51
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
53 |
48 52
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ) |
54 |
8
|
fveq1i |
⊢ ( 𝑄 ‘ ( 𝑥 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ ( 𝑥 + 1 ) ) |
55 |
|
fzofzp1 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
57 |
56
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ) |
58 |
54 57
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) |
59 |
53 58
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
60 |
59
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) ) |
61 |
47 60
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) ) |
62 |
61
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
63 |
14
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ) |
64 |
15
|
ffund |
⊢ ( 𝐹 ∈ Word dom 𝐼 → Fun 𝐹 ) |
65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) → Fun 𝐹 ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → Fun 𝐹 ) |
67 |
|
fdm |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
68 |
|
elfzouz2 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
69 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
70 |
4 68 69
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
71 |
|
sseq2 |
⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ↔ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
72 |
70 71
|
syl5ibr |
⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) ) |
73 |
15 67 72
|
3syl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) ) |
74 |
73
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) |
76 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ..^ 𝑁 ) ) |
77 |
66 75 76
|
resfvresima |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
78 |
63 77
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
79 |
78
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
80 |
79
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) ) |
81 |
47 80
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) ) |
82 |
81
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
83 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
84 |
7
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐹 prefix 𝑁 ) ‘ 𝑥 ) |
85 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝐹 ∈ Word dom 𝐼 ) |
86 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
87 |
|
pfxres |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
88 |
85 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
89 |
88
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( 𝐹 prefix 𝑁 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) |
90 |
84 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) |
91 |
83 90
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
92 |
82 91
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
93 |
62 92
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
94 |
4 68
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
95 |
37
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
96 |
94 95
|
eleqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) ) |
97 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
98 |
96 97
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
99 |
98
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
100 |
|
wkslem1 |
⊢ ( 𝑘 = 𝑥 → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
101 |
100
|
rspcv |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
102 |
99 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
103 |
|
eqeq12 |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ↔ ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
104 |
103
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ↔ ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
105 |
|
simpr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
106 |
|
sneq |
⊢ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
108 |
107
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
109 |
105 108
|
eqeq12d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } ↔ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } ) ) |
110 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ) |
111 |
110
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ) |
112 |
111 105
|
sseq12d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
113 |
104 109 112
|
ifpbi123d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
114 |
113
|
biimpd |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
115 |
93 102 114
|
sylsyld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
116 |
115
|
com12 |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
117 |
116
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
118 |
45 117
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
119 |
118
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
120 |
1 2 3 4 5
|
wlkreslem |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
121 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
122 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
123 |
121 122
|
iswlkg |
⊢ ( 𝑆 ∈ V → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) ) |
124 |
120 123
|
syl |
⊢ ( 𝜑 → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) ) |
125 |
23 42 119 124
|
mpbir3and |
⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |