Step |
Hyp |
Ref |
Expression |
1 |
|
wlkres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wlkres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
wlkres.d |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
4 |
|
wlkres.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
5 |
|
wlkres.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
6 |
|
ax-1 |
⊢ ( 𝑆 ∈ V → ( 𝜑 → 𝑆 ∈ V ) ) |
7 |
|
df-nel |
⊢ ( 𝑆 ∉ V ↔ ¬ 𝑆 ∈ V ) |
8 |
|
df-br |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) ) |
9 |
|
ne0i |
⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) → ( Walks ‘ 𝐺 ) ≠ ∅ ) |
10 |
5 1
|
eqtrdi |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝐺 ) ) |
11 |
10
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝑆 ∉ V ) → ( 𝑆 ∉ V ∧ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝐺 ) ) ) |
12 |
|
wlk0prc |
⊢ ( ( 𝑆 ∉ V ∧ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝐺 ) ) → ( Walks ‘ 𝐺 ) = ∅ ) |
13 |
|
eqneqall |
⊢ ( ( Walks ‘ 𝐺 ) = ∅ → ( ( Walks ‘ 𝐺 ) ≠ ∅ → 𝑆 ∈ V ) ) |
14 |
11 12 13
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑆 ∉ V ) → ( ( Walks ‘ 𝐺 ) ≠ ∅ → 𝑆 ∈ V ) ) |
15 |
14
|
expcom |
⊢ ( 𝑆 ∉ V → ( 𝜑 → ( ( Walks ‘ 𝐺 ) ≠ ∅ → 𝑆 ∈ V ) ) ) |
16 |
15
|
com13 |
⊢ ( ( Walks ‘ 𝐺 ) ≠ ∅ → ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) ) |
17 |
9 16
|
syl |
⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) → ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) ) |
18 |
8 17
|
sylbi |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) ) |
19 |
3 18
|
mpcom |
⊢ ( 𝜑 → ( 𝑆 ∉ V → 𝑆 ∈ V ) ) |
20 |
19
|
com12 |
⊢ ( 𝑆 ∉ V → ( 𝜑 → 𝑆 ∈ V ) ) |
21 |
7 20
|
sylbir |
⊢ ( ¬ 𝑆 ∈ V → ( 𝜑 → 𝑆 ∈ V ) ) |
22 |
6 21
|
pm2.61i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |