| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkres.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wlkres.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | wlkres.d | ⊢ ( 𝜑  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 4 |  | wlkres.n | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 5 |  | wlkres.s | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  𝑉 ) | 
						
							| 6 |  | ax-1 | ⊢ ( 𝑆  ∈  V  →  ( 𝜑  →  𝑆  ∈  V ) ) | 
						
							| 7 |  | df-nel | ⊢ ( 𝑆  ∉  V  ↔  ¬  𝑆  ∈  V ) | 
						
							| 8 |  | df-br | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ↔  〈 𝐹 ,  𝑃 〉  ∈  ( Walks ‘ 𝐺 ) ) | 
						
							| 9 |  | ne0i | ⊢ ( 〈 𝐹 ,  𝑃 〉  ∈  ( Walks ‘ 𝐺 )  →  ( Walks ‘ 𝐺 )  ≠  ∅ ) | 
						
							| 10 | 5 1 | eqtrdi | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑆 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 | 10 | anim1ci | ⊢ ( ( 𝜑  ∧  𝑆  ∉  V )  →  ( 𝑆  ∉  V  ∧  ( Vtx ‘ 𝑆 )  =  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 12 |  | wlk0prc | ⊢ ( ( 𝑆  ∉  V  ∧  ( Vtx ‘ 𝑆 )  =  ( Vtx ‘ 𝐺 ) )  →  ( Walks ‘ 𝐺 )  =  ∅ ) | 
						
							| 13 |  | eqneqall | ⊢ ( ( Walks ‘ 𝐺 )  =  ∅  →  ( ( Walks ‘ 𝐺 )  ≠  ∅  →  𝑆  ∈  V ) ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝜑  ∧  𝑆  ∉  V )  →  ( ( Walks ‘ 𝐺 )  ≠  ∅  →  𝑆  ∈  V ) ) | 
						
							| 15 | 14 | expcom | ⊢ ( 𝑆  ∉  V  →  ( 𝜑  →  ( ( Walks ‘ 𝐺 )  ≠  ∅  →  𝑆  ∈  V ) ) ) | 
						
							| 16 | 15 | com13 | ⊢ ( ( Walks ‘ 𝐺 )  ≠  ∅  →  ( 𝜑  →  ( 𝑆  ∉  V  →  𝑆  ∈  V ) ) ) | 
						
							| 17 | 9 16 | syl | ⊢ ( 〈 𝐹 ,  𝑃 〉  ∈  ( Walks ‘ 𝐺 )  →  ( 𝜑  →  ( 𝑆  ∉  V  →  𝑆  ∈  V ) ) ) | 
						
							| 18 | 8 17 | sylbi | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝜑  →  ( 𝑆  ∉  V  →  𝑆  ∈  V ) ) ) | 
						
							| 19 | 3 18 | mpcom | ⊢ ( 𝜑  →  ( 𝑆  ∉  V  →  𝑆  ∈  V ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( 𝑆  ∉  V  →  ( 𝜑  →  𝑆  ∈  V ) ) | 
						
							| 21 | 7 20 | sylbir | ⊢ ( ¬  𝑆  ∈  V  →  ( 𝜑  →  𝑆  ∈  V ) ) | 
						
							| 22 | 6 21 | pm2.61i | ⊢ ( 𝜑  →  𝑆  ∈  V ) |