Description: The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 3-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
3 | 1 2 | wksfval | ⊢ ( 𝐺 ∈ V → ( Walks ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) |
4 | 3 | brfvopab | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |