Step |
Hyp |
Ref |
Expression |
1 |
|
wlkvtxedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
3 |
2
|
wlkvtxiedg |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
4 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
5 |
1 4
|
eqtr2i |
⊢ ran ( iEdg ‘ 𝐺 ) = 𝐸 |
6 |
5
|
rexeqi |
⊢ ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
8 |
3 7
|
sylib |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |