| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkvtxedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 2 | wlkvtxiedg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  𝑒 ) | 
						
							| 4 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 5 | 1 4 | eqtr2i | ⊢ ran  ( iEdg ‘ 𝐺 )  =  𝐸 | 
						
							| 6 | 5 | rexeqi | ⊢ ( ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  𝑒  ↔  ∃ 𝑒  ∈  𝐸 { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  𝑒 ) | 
						
							| 7 | 6 | ralbii | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒  ∈  ran  ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  𝑒  ↔  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒  ∈  𝐸 { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  𝑒 ) | 
						
							| 8 | 3 7 | sylib | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒  ∈  𝐸 { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  𝑒 ) |