Step |
Hyp |
Ref |
Expression |
1 |
|
wlkvtxeledg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
1
|
wlkvtxeledg |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
3 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑘 ) ∈ V |
4 |
3
|
prnz |
⊢ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ≠ ∅ |
5 |
|
ssn0 |
⊢ ( ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ≠ ∅ ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ ) |
6 |
4 5
|
mpan2 |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ ) |
8 |
|
fvn0fvelrn |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ≠ ∅ → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ran 𝐼 ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ran 𝐼 ) |
10 |
|
sseq2 |
⊢ ( 𝑒 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ 𝑒 = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
13 |
9 11 12
|
rspcedvd |
⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
14 |
13
|
ex |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) ) |
15 |
14
|
ralimdva |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) ) |
16 |
2 15
|
mpd |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran 𝐼 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |