| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wofib.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
wofi |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 We 𝐴 ) |
| 3 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
| 4 |
|
wofi |
⊢ ( ( ◡ 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ◡ 𝑅 We 𝐴 ) |
| 5 |
3 4
|
sylanb |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ◡ 𝑅 We 𝐴 ) |
| 6 |
2 5
|
jca |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ) |
| 7 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → 𝑅 Or 𝐴 ) |
| 9 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 10 |
|
sucidg |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ suc 𝑦 ) |
| 11 |
|
vex |
⊢ 𝑧 ∈ V |
| 12 |
|
vex |
⊢ 𝑦 ∈ V |
| 13 |
11 12
|
brcnv |
⊢ ( 𝑧 ◡ E 𝑦 ↔ 𝑦 E 𝑧 ) |
| 14 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
| 15 |
13 14
|
bitri |
⊢ ( 𝑧 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑧 ) |
| 16 |
|
eleq2 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦 ) ) |
| 17 |
15 16
|
bitrid |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ◡ E 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) ) |
| 18 |
17
|
rspcev |
⊢ ( ( suc 𝑦 ∈ ω ∧ 𝑦 ∈ suc 𝑦 ) → ∃ 𝑧 ∈ ω 𝑧 ◡ E 𝑦 ) |
| 19 |
9 10 18
|
syl2anc |
⊢ ( 𝑦 ∈ ω → ∃ 𝑧 ∈ ω 𝑧 ◡ E 𝑦 ) |
| 20 |
|
dfrex2 |
⊢ ( ∃ 𝑧 ∈ ω 𝑧 ◡ E 𝑦 ↔ ¬ ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝑦 ∈ ω → ¬ ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) |
| 22 |
21
|
nrex |
⊢ ¬ ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 |
| 23 |
|
ordom |
⊢ Ord ω |
| 24 |
|
eqid |
⊢ OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑅 , 𝐴 ) |
| 25 |
24
|
oicl |
⊢ Ord dom OrdIso ( 𝑅 , 𝐴 ) |
| 26 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord dom OrdIso ( 𝑅 , 𝐴 ) ) → ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ↔ ¬ dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ) ) |
| 27 |
23 25 26
|
mp2an |
⊢ ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ↔ ¬ dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ) |
| 28 |
24
|
oion |
⊢ ( 𝐴 ∈ V → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
| 29 |
1 28
|
mp1i |
⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 31 |
29 30
|
ssexd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ω ∈ V ) |
| 32 |
24
|
oiiso |
⊢ ( ( 𝐴 ∈ V ∧ 𝑅 We 𝐴 ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 33 |
1 32
|
mpan |
⊢ ( 𝑅 We 𝐴 → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 34 |
|
isocnv2 |
⊢ ( OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 35 |
33 34
|
sylib |
⊢ ( 𝑅 We 𝐴 → OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
| 36 |
|
wefr |
⊢ ( ◡ 𝑅 We 𝐴 → ◡ 𝑅 Fr 𝐴 ) |
| 37 |
|
isofr |
⊢ ( OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) → ( ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ↔ ◡ 𝑅 Fr 𝐴 ) ) |
| 38 |
37
|
biimpar |
⊢ ( ( OrdIso ( 𝑅 , 𝐴 ) Isom ◡ E , ◡ 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ∧ ◡ 𝑅 Fr 𝐴 ) → ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 39 |
35 36 38
|
syl2an |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) |
| 41 |
|
1onn |
⊢ 1o ∈ ω |
| 42 |
|
ne0i |
⊢ ( 1o ∈ ω → ω ≠ ∅ ) |
| 43 |
41 42
|
mp1i |
⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ω ≠ ∅ ) |
| 44 |
|
fri |
⊢ ( ( ( ω ∈ V ∧ ◡ E Fr dom OrdIso ( 𝑅 , 𝐴 ) ) ∧ ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ∧ ω ≠ ∅ ) ) → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) |
| 45 |
31 40 30 43 44
|
syl22anc |
⊢ ( ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ∧ ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) |
| 46 |
45
|
ex |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( ω ⊆ dom OrdIso ( 𝑅 , 𝐴 ) → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) ) |
| 47 |
27 46
|
biimtrrid |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( ¬ dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω → ∃ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ¬ 𝑧 ◡ E 𝑦 ) ) |
| 48 |
22 47
|
mt3i |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ) |
| 49 |
|
ssid |
⊢ dom OrdIso ( 𝑅 , 𝐴 ) ⊆ dom OrdIso ( 𝑅 , 𝐴 ) |
| 50 |
|
ssnnfi |
⊢ ( ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ ω ∧ dom OrdIso ( 𝑅 , 𝐴 ) ⊆ dom OrdIso ( 𝑅 , 𝐴 ) ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ) |
| 51 |
48 49 50
|
sylancl |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ) |
| 52 |
|
simpl |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → 𝑅 We 𝐴 ) |
| 53 |
24
|
oien |
⊢ ( ( 𝐴 ∈ V ∧ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
| 54 |
1 52 53
|
sylancr |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
| 55 |
|
enfi |
⊢ ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 → ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ Fin ↔ 𝐴 ∈ Fin ) ) |
| 57 |
51 56
|
mpbid |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → 𝐴 ∈ Fin ) |
| 58 |
8 57
|
jca |
⊢ ( ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) → ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ) |
| 59 |
6 58
|
impbii |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) ↔ ( 𝑅 We 𝐴 ∧ ◡ 𝑅 We 𝐴 ) ) |