| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknon | ⊢ ( 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) ) ) | 
						
							| 3 | 2 | anbi1d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 )  ↔  ( ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 4 |  | 3anass | ⊢ ( ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ↔  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) ) ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 )  ↔  ( ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 6 |  | anass | ⊢ ( ( ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 )  ↔  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( ( ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 )  ↔  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 8 | 3 7 | bitrdi | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 )  ↔  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∧  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) ) | 
						
							| 9 | 8 | rabbidva2 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  { 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  { 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∣  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) } ) | 
						
							| 10 |  | usgrupgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UPGraph ) | 
						
							| 11 |  | wlklnwwlknupgr | ⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  𝑤  ∈  ( 2  WWalksN  𝐺 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  𝑤  ∈  ( 2  WWalksN  𝐺 ) ) ) | 
						
							| 13 | 12 | bicomd | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 15 |  | simprl | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑤 ) | 
						
							| 16 |  | simprl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  →  ( 𝑤 ‘ 0 )  =  𝐴 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑤 ‘ 0 )  =  𝐴 ) | 
						
							| 18 |  | fveq2 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 𝑤 ‘ ( ♯ ‘ 𝑓 ) )  =  ( 𝑤 ‘ 2 ) ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑤 ‘ ( ♯ ‘ 𝑓 ) )  =  ( 𝑤 ‘ 2 ) ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  →  ( 𝑤 ‘ 2 )  =  𝐵 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑤 ‘ 2 )  =  𝐵 ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑤 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐵 ) | 
						
							| 23 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 24 | 23 | wlkp | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  →  𝑤 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 0 ... ( ♯ ‘ 𝑓 ) )  =  ( 0 ... 2 ) ) | 
						
							| 26 | 25 | feq2d | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 𝑤 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ↔  𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 27 | 24 26 | syl5ibcom | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  →  ( ( ♯ ‘ 𝑓 )  =  2  →  𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 29 |  | id | ⊢ ( 𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 )  →  𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 30 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 31 |  | 0elfz | ⊢ ( 2  ∈  ℕ0  →  0  ∈  ( 0 ... 2 ) ) | 
						
							| 32 | 30 31 | mp1i | ⊢ ( 𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 )  →  0  ∈  ( 0 ... 2 ) ) | 
						
							| 33 | 29 32 | ffvelcdmd | ⊢ ( 𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝑤 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 34 |  | nn0fz0 | ⊢ ( 2  ∈  ℕ0  ↔  2  ∈  ( 0 ... 2 ) ) | 
						
							| 35 | 30 34 | mpbi | ⊢ 2  ∈  ( 0 ... 2 ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 )  →  2  ∈  ( 0 ... 2 ) ) | 
						
							| 37 | 29 36 | ffvelcdmd | ⊢ ( 𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 )  →  ( 𝑤 ‘ 2 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 38 | 33 37 | jca | ⊢ ( 𝑤 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( 𝑤 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑤 ‘ 2 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 39 | 28 38 | syl | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( 𝑤 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑤 ‘ 2 )  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 40 |  | eleq1 | ⊢ ( ( 𝑤 ‘ 0 )  =  𝐴  →  ( ( 𝑤 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ↔  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 41 |  | eleq1 | ⊢ ( ( 𝑤 ‘ 2 )  =  𝐵  →  ( ( 𝑤 ‘ 2 )  ∈  ( Vtx ‘ 𝐺 )  ↔  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 42 | 40 41 | bi2anan9 | ⊢ ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  →  ( ( ( 𝑤 ‘ 0 )  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑤 ‘ 2 )  ∈  ( Vtx ‘ 𝐺 ) )  ↔  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 43 | 39 42 | imbitrid | ⊢ ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 46 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 47 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 48 | 46 47 | pm3.2i | ⊢ ( 𝑓  ∈  V  ∧  𝑤  ∈  V ) | 
						
							| 49 | 23 | iswlkon | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑓  ∈  V  ∧  𝑤  ∈  V ) )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑤  ↔  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐵 ) ) ) | 
						
							| 50 | 45 48 49 | sylancl | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑤  ↔  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐵 ) ) ) | 
						
							| 51 | 15 17 22 50 | mpbir3and | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) | 
						
							| 52 |  | simplll | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  𝐺  ∈  USGraph ) | 
						
							| 53 |  | simprr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 54 |  | simpllr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 55 |  | usgr2wlkspth | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  𝐴  ≠  𝐵 )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑤  ↔  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 56 | 52 53 54 55 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑤  ↔  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 57 | 51 56 | mpbid | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) | 
						
							| 58 | 57 | ex | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 59 | 58 | eximdv | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) )  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 61 | 60 | com23 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑤  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  →  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 62 | 14 61 | sylbid | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( 𝑤  ∈  ( 2  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  →  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 63 | 62 | imp | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  𝑤  ∈  ( 2  WWalksN  𝐺 ) )  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  →  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 64 | 63 | pm4.71d | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  𝑤  ∈  ( 2  WWalksN  𝐺 ) )  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ↔  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) ) | 
						
							| 65 | 64 | bicomd | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  ∧  𝑤  ∈  ( 2  WWalksN  𝐺 ) )  →  ( ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) ) ) | 
						
							| 66 | 65 | rabbidva | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  { 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∣  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 )  ∧  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) }  =  { 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) } ) | 
						
							| 67 | 9 66 | eqtrd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  { 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  { 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) } ) | 
						
							| 68 | 23 | iswspthsnon | ⊢ ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } | 
						
							| 69 | 23 | iswwlksnon | ⊢ ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 2  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 2 )  =  𝐵 ) } | 
						
							| 70 | 67 68 69 | 3eqtr4g | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) |