Metamath Proof Explorer


Theorem wrdco

Description: Mapping a word by a function. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion wrdco ( ( 𝑊 ∈ Word 𝐴𝐹 : 𝐴𝐵 ) → ( 𝐹𝑊 ) ∈ Word 𝐵 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑊 ∈ Word 𝐴𝐹 : 𝐴𝐵 ) → 𝐹 : 𝐴𝐵 )
2 wrdf ( 𝑊 ∈ Word 𝐴𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 )
3 2 adantr ( ( 𝑊 ∈ Word 𝐴𝐹 : 𝐴𝐵 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 )
4 fco ( ( 𝐹 : 𝐴𝐵𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐹𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 )
5 1 3 4 syl2anc ( ( 𝑊 ∈ Word 𝐴𝐹 : 𝐴𝐵 ) → ( 𝐹𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 )
6 iswrdi ( ( 𝐹𝑊 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 → ( 𝐹𝑊 ) ∈ Word 𝐵 )
7 5 6 syl ( ( 𝑊 ∈ Word 𝐴𝐹 : 𝐴𝐵 ) → ( 𝐹𝑊 ) ∈ Word 𝐵 )