| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wrdexg | 
							⊢ ( 𝑆  ∈  V  →  Word  𝑆  ∈  V )  | 
						
						
							| 2 | 
							
								
							 | 
							opex | 
							⊢ 〈 0 ,  𝑠 〉  ∈  V  | 
						
						
							| 3 | 
							
								2
							 | 
							snid | 
							⊢ 〈 0 ,  𝑠 〉  ∈  { 〈 0 ,  𝑠 〉 }  | 
						
						
							| 4 | 
							
								
							 | 
							snopiswrd | 
							⊢ ( 𝑠  ∈  𝑆  →  { 〈 0 ,  𝑠 〉 }  ∈  Word  𝑆 )  | 
						
						
							| 5 | 
							
								
							 | 
							elunii | 
							⊢ ( ( 〈 0 ,  𝑠 〉  ∈  { 〈 0 ,  𝑠 〉 }  ∧  { 〈 0 ,  𝑠 〉 }  ∈  Word  𝑆 )  →  〈 0 ,  𝑠 〉  ∈  ∪  Word  𝑆 )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							sylancr | 
							⊢ ( 𝑠  ∈  𝑆  →  〈 0 ,  𝑠 〉  ∈  ∪  Word  𝑆 )  | 
						
						
							| 7 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 8 | 
							
								
							 | 
							vex | 
							⊢ 𝑠  ∈  V  | 
						
						
							| 9 | 
							
								7 8
							 | 
							opeluu | 
							⊢ ( 〈 0 ,  𝑠 〉  ∈  ∪  Word  𝑆  →  ( 0  ∈  ∪  ∪  ∪  Word  𝑆  ∧  𝑠  ∈  ∪  ∪  ∪  Word  𝑆 ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							syl | 
							⊢ ( 𝑠  ∈  𝑆  →  ( 0  ∈  ∪  ∪  ∪  Word  𝑆  ∧  𝑠  ∈  ∪  ∪  ∪  Word  𝑆 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simprd | 
							⊢ ( 𝑠  ∈  𝑆  →  𝑠  ∈  ∪  ∪  ∪  Word  𝑆 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ssriv | 
							⊢ 𝑆  ⊆  ∪  ∪  ∪  Word  𝑆  | 
						
						
							| 13 | 
							
								
							 | 
							uniexg | 
							⊢ ( Word  𝑆  ∈  V  →  ∪  Word  𝑆  ∈  V )  | 
						
						
							| 14 | 
							
								
							 | 
							uniexg | 
							⊢ ( ∪  Word  𝑆  ∈  V  →  ∪  ∪  Word  𝑆  ∈  V )  | 
						
						
							| 15 | 
							
								
							 | 
							uniexg | 
							⊢ ( ∪  ∪  Word  𝑆  ∈  V  →  ∪  ∪  ∪  Word  𝑆  ∈  V )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3syl | 
							⊢ ( Word  𝑆  ∈  V  →  ∪  ∪  ∪  Word  𝑆  ∈  V )  | 
						
						
							| 17 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( 𝑆  ⊆  ∪  ∪  ∪  Word  𝑆  ∧  ∪  ∪  ∪  Word  𝑆  ∈  V )  →  𝑆  ∈  V )  | 
						
						
							| 18 | 
							
								12 16 17
							 | 
							sylancr | 
							⊢ ( Word  𝑆  ∈  V  →  𝑆  ∈  V )  | 
						
						
							| 19 | 
							
								1 18
							 | 
							impbii | 
							⊢ ( 𝑆  ∈  V  ↔  Word  𝑆  ∈  V )  |