Metamath Proof Explorer


Theorem wrdexb

Description: The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 23-Nov-2018)

Ref Expression
Assertion wrdexb ( 𝑆 ∈ V ↔ Word 𝑆 ∈ V )

Proof

Step Hyp Ref Expression
1 wrdexg ( 𝑆 ∈ V → Word 𝑆 ∈ V )
2 opex ⟨ 0 , 𝑠 ⟩ ∈ V
3 2 snid ⟨ 0 , 𝑠 ⟩ ∈ { ⟨ 0 , 𝑠 ⟩ }
4 snopiswrd ( 𝑠𝑆 → { ⟨ 0 , 𝑠 ⟩ } ∈ Word 𝑆 )
5 elunii ( ( ⟨ 0 , 𝑠 ⟩ ∈ { ⟨ 0 , 𝑠 ⟩ } ∧ { ⟨ 0 , 𝑠 ⟩ } ∈ Word 𝑆 ) → ⟨ 0 , 𝑠 ⟩ ∈ Word 𝑆 )
6 3 4 5 sylancr ( 𝑠𝑆 → ⟨ 0 , 𝑠 ⟩ ∈ Word 𝑆 )
7 c0ex 0 ∈ V
8 vex 𝑠 ∈ V
9 7 8 opeluu ( ⟨ 0 , 𝑠 ⟩ ∈ Word 𝑆 → ( 0 ∈ Word 𝑆𝑠 Word 𝑆 ) )
10 6 9 syl ( 𝑠𝑆 → ( 0 ∈ Word 𝑆𝑠 Word 𝑆 ) )
11 10 simprd ( 𝑠𝑆𝑠 Word 𝑆 )
12 11 ssriv 𝑆 Word 𝑆
13 uniexg ( Word 𝑆 ∈ V → Word 𝑆 ∈ V )
14 uniexg ( Word 𝑆 ∈ V → Word 𝑆 ∈ V )
15 uniexg ( Word 𝑆 ∈ V → Word 𝑆 ∈ V )
16 13 14 15 3syl ( Word 𝑆 ∈ V → Word 𝑆 ∈ V )
17 ssexg ( ( 𝑆 Word 𝑆 Word 𝑆 ∈ V ) → 𝑆 ∈ V )
18 12 16 17 sylancr ( Word 𝑆 ∈ V → 𝑆 ∈ V )
19 1 18 impbii ( 𝑆 ∈ V ↔ Word 𝑆 ∈ V )