Step |
Hyp |
Ref |
Expression |
1 |
|
wrdexg |
⊢ ( 𝑆 ∈ V → Word 𝑆 ∈ V ) |
2 |
|
opex |
⊢ 〈 0 , 𝑠 〉 ∈ V |
3 |
2
|
snid |
⊢ 〈 0 , 𝑠 〉 ∈ { 〈 0 , 𝑠 〉 } |
4 |
|
snopiswrd |
⊢ ( 𝑠 ∈ 𝑆 → { 〈 0 , 𝑠 〉 } ∈ Word 𝑆 ) |
5 |
|
elunii |
⊢ ( ( 〈 0 , 𝑠 〉 ∈ { 〈 0 , 𝑠 〉 } ∧ { 〈 0 , 𝑠 〉 } ∈ Word 𝑆 ) → 〈 0 , 𝑠 〉 ∈ ∪ Word 𝑆 ) |
6 |
3 4 5
|
sylancr |
⊢ ( 𝑠 ∈ 𝑆 → 〈 0 , 𝑠 〉 ∈ ∪ Word 𝑆 ) |
7 |
|
c0ex |
⊢ 0 ∈ V |
8 |
|
vex |
⊢ 𝑠 ∈ V |
9 |
7 8
|
opeluu |
⊢ ( 〈 0 , 𝑠 〉 ∈ ∪ Word 𝑆 → ( 0 ∈ ∪ ∪ ∪ Word 𝑆 ∧ 𝑠 ∈ ∪ ∪ ∪ Word 𝑆 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝑠 ∈ 𝑆 → ( 0 ∈ ∪ ∪ ∪ Word 𝑆 ∧ 𝑠 ∈ ∪ ∪ ∪ Word 𝑆 ) ) |
11 |
10
|
simprd |
⊢ ( 𝑠 ∈ 𝑆 → 𝑠 ∈ ∪ ∪ ∪ Word 𝑆 ) |
12 |
11
|
ssriv |
⊢ 𝑆 ⊆ ∪ ∪ ∪ Word 𝑆 |
13 |
|
uniexg |
⊢ ( Word 𝑆 ∈ V → ∪ Word 𝑆 ∈ V ) |
14 |
|
uniexg |
⊢ ( ∪ Word 𝑆 ∈ V → ∪ ∪ Word 𝑆 ∈ V ) |
15 |
|
uniexg |
⊢ ( ∪ ∪ Word 𝑆 ∈ V → ∪ ∪ ∪ Word 𝑆 ∈ V ) |
16 |
13 14 15
|
3syl |
⊢ ( Word 𝑆 ∈ V → ∪ ∪ ∪ Word 𝑆 ∈ V ) |
17 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ∪ ∪ ∪ Word 𝑆 ∧ ∪ ∪ ∪ Word 𝑆 ∈ V ) → 𝑆 ∈ V ) |
18 |
12 16 17
|
sylancr |
⊢ ( Word 𝑆 ∈ V → 𝑆 ∈ V ) |
19 |
1 18
|
impbii |
⊢ ( 𝑆 ∈ V ↔ Word 𝑆 ∈ V ) |