Metamath Proof Explorer


Theorem wrdexg

Description: The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdexg ( 𝑆𝑉 → Word 𝑆 ∈ V )

Proof

Step Hyp Ref Expression
1 wrdval ( 𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 ( 𝑆m ( 0 ..^ 𝑙 ) ) )
2 nn0ex 0 ∈ V
3 ovexd ( ( 𝑆𝑉𝑙 ∈ ℕ0 ) → ( 𝑆m ( 0 ..^ 𝑙 ) ) ∈ V )
4 3 ralrimiva ( 𝑆𝑉 → ∀ 𝑙 ∈ ℕ0 ( 𝑆m ( 0 ..^ 𝑙 ) ) ∈ V )
5 iunexg ( ( ℕ0 ∈ V ∧ ∀ 𝑙 ∈ ℕ0 ( 𝑆m ( 0 ..^ 𝑙 ) ) ∈ V ) → 𝑙 ∈ ℕ0 ( 𝑆m ( 0 ..^ 𝑙 ) ) ∈ V )
6 2 4 5 sylancr ( 𝑆𝑉 𝑙 ∈ ℕ0 ( 𝑆m ( 0 ..^ 𝑙 ) ) ∈ V )
7 1 6 eqeltrd ( 𝑆𝑉 → Word 𝑆 ∈ V )