Step |
Hyp |
Ref |
Expression |
1 |
|
iswrd |
⊢ ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
2 |
|
simpr |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
3 |
|
fnfzo0hash |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( ♯ ‘ 𝑊 ) = 𝑙 ) |
4 |
3
|
oveq2d |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝑙 ) ) |
5 |
4
|
feq2d |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
6 |
2 5
|
mpbird |
⊢ ( ( 𝑙 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
7 |
6
|
rexlimiva |
⊢ ( ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
8 |
1 7
|
sylbi |
⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |