Metamath Proof Explorer


Theorem wrdf

Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion wrdf ( 𝑊 ∈ Word 𝑆𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )

Proof

Step Hyp Ref Expression
1 iswrd ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 )
2 simpr ( ( 𝑙 ∈ ℕ0𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 )
3 fnfzo0hash ( ( 𝑙 ∈ ℕ0𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( ♯ ‘ 𝑊 ) = 𝑙 )
4 3 oveq2d ( ( 𝑙 ∈ ℕ0𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝑙 ) )
5 4 feq2d ( ( 𝑙 ∈ ℕ0𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) )
6 2 5 mpbird ( ( 𝑙 ∈ ℕ0𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )
7 6 rexlimiva ( ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )
8 1 7 sylbi ( 𝑊 ∈ Word 𝑆𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )