Metamath Proof Explorer


Theorem wrdffz

Description: A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021)

Ref Expression
Assertion wrdffz ( 𝑊 ∈ Word 𝑆𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 )

Proof

Step Hyp Ref Expression
1 wrdf ( 𝑊 ∈ Word 𝑆𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )
2 lencl ( 𝑊 ∈ Word 𝑆 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 )
3 2 nn0zd ( 𝑊 ∈ Word 𝑆 → ( ♯ ‘ 𝑊 ) ∈ ℤ )
4 fzoval ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) )
5 3 4 syl ( 𝑊 ∈ Word 𝑆 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) )
6 5 feq2d ( 𝑊 ∈ Word 𝑆 → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 ) )
7 1 6 mpbid ( 𝑊 ∈ Word 𝑆𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 )