Metamath Proof Explorer


Theorem wrdfin

Description: A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015) (Proof shortened by AV, 18-Nov-2018)

Ref Expression
Assertion wrdfin ( 𝑊 ∈ Word 𝑆𝑊 ∈ Fin )

Proof

Step Hyp Ref Expression
1 wrdfn ( 𝑊 ∈ Word 𝑆𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
2 fzofi ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ Fin
3 fnfi ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ Fin ) → 𝑊 ∈ Fin )
4 1 2 3 sylancl ( 𝑊 ∈ Word 𝑆𝑊 ∈ Fin )