Step |
Hyp |
Ref |
Expression |
1 |
|
1le1 |
⊢ 1 ≤ 1 |
2 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 1 ≤ ( ♯ ‘ 𝑊 ) ↔ 1 ≤ 1 ) ) |
3 |
1 2
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑊 ) = 1 → 1 ≤ ( ♯ ‘ 𝑊 ) ) |
4 |
|
wrdsymb1 |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑆 ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 ‘ 0 ) ∈ 𝑆 ) |
6 |
|
s1eq |
⊢ ( 𝑠 = ( 𝑊 ‘ 0 ) → 〈“ 𝑠 ”〉 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) ∧ 𝑠 = ( 𝑊 ‘ 0 ) ) → 〈“ 𝑠 ”〉 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
8 |
7
|
eqeq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) ∧ 𝑠 = ( 𝑊 ‘ 0 ) ) → ( 𝑊 = 〈“ 𝑠 ”〉 ↔ 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) |
9 |
|
eqs1 |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
10 |
5 8 9
|
rspcedvd |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ∃ 𝑠 ∈ 𝑆 𝑊 = 〈“ 𝑠 ”〉 ) |