| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 2 | 1 | tpid1 | ⊢ 0  ∈  { 0 ,  1 ,  2 } | 
						
							| 3 |  | fzo0to3tp | ⊢ ( 0 ..^ 3 )  =  { 0 ,  1 ,  2 } | 
						
							| 4 | 2 3 | eleqtrri | ⊢ 0  ∈  ( 0 ..^ 3 ) | 
						
							| 5 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 3 ) ) | 
						
							| 6 | 4 5 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 9 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 10 | 9 | tpid2 | ⊢ 1  ∈  { 0 ,  1 ,  2 } | 
						
							| 11 | 10 3 | eleqtrri | ⊢ 1  ∈  ( 0 ..^ 3 ) | 
						
							| 12 | 11 5 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 13 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 1 )  ∈  𝑉 ) | 
						
							| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( 𝑊 ‘ 1 )  ∈  𝑉 ) | 
						
							| 15 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 16 | 15 | tpid3 | ⊢ 2  ∈  { 0 ,  1 ,  2 } | 
						
							| 17 | 16 3 | eleqtrri | ⊢ 2  ∈  ( 0 ..^ 3 ) | 
						
							| 18 | 17 5 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝑊 )  =  3  →  2  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 19 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 2 )  ∈  𝑉 ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( 𝑊 ‘ 2 )  ∈  𝑉 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( ♯ ‘ 𝑊 )  =  3 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) | 
						
							| 25 | 22 23 24 | 3pm3.2i | ⊢ ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) ) | 
						
							| 26 | 21 25 | jctir | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) ) ) ) | 
						
							| 27 |  | eqeq2 | ⊢ ( 𝑎  =  ( 𝑊 ‘ 0 )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ↔  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 28 | 27 | 3anbi1d | ⊢ ( 𝑎  =  ( 𝑊 ‘ 0 )  →  ( ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 )  ↔  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 29 | 28 | anbi2d | ⊢ ( 𝑎  =  ( 𝑊 ‘ 0 )  →  ( ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 30 |  | eqeq2 | ⊢ ( 𝑏  =  ( 𝑊 ‘ 1 )  →  ( ( 𝑊 ‘ 1 )  =  𝑏  ↔  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 ) ) ) | 
						
							| 31 | 30 | 3anbi2d | ⊢ ( 𝑏  =  ( 𝑊 ‘ 1 )  →  ( ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 )  ↔  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 32 | 31 | anbi2d | ⊢ ( 𝑏  =  ( 𝑊 ‘ 1 )  →  ( ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 33 |  | eqeq2 | ⊢ ( 𝑐  =  ( 𝑊 ‘ 2 )  →  ( ( 𝑊 ‘ 2 )  =  𝑐  ↔  ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) ) ) | 
						
							| 34 | 33 | 3anbi3d | ⊢ ( 𝑐  =  ( 𝑊 ‘ 2 )  →  ( ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝑐 )  ↔  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) ) ) ) | 
						
							| 35 | 34 | anbi2d | ⊢ ( 𝑐  =  ( 𝑊 ‘ 2 )  →  ( ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) )  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) ) ) ) ) | 
						
							| 36 | 29 32 35 | rspc3ev | ⊢ ( ( ( ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( 𝑊 ‘ 1 )  ∈  𝑉  ∧  ( 𝑊 ‘ 2 )  ∈  𝑉 )  ∧  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 1 )  =  ( 𝑊 ‘ 1 )  ∧  ( 𝑊 ‘ 2 )  =  ( 𝑊 ‘ 2 ) ) ) )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 37 | 8 14 20 26 36 | syl31anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 38 |  | df-3an | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ↔  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 39 |  | eqwrds3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) ) | 
						
							| 41 | 38 40 | biimtrrid | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑐  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) ) | 
						
							| 42 | 41 | expd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑐  ∈  𝑉  →  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( 𝑐  ∈  𝑉  →  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) ) ) | 
						
							| 44 | 43 | imp31 | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  ∧  𝑐  ∈  𝑉 )  →  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 45 | 44 | rexbidva | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) )  →  ( ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ∃ 𝑐  ∈  𝑉 ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 46 | 45 | 2rexbidva | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( ♯ ‘ 𝑊 )  =  3  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 1 )  =  𝑏  ∧  ( 𝑊 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 47 | 37 46 | mpbird | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 48 |  | s3cl | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  𝑉 ) | 
						
							| 49 | 48 | ad4ant123 | ⊢ ( ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑐  ∈  𝑉 )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  𝑉 ) | 
						
							| 50 |  | s3len | ⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3 | 
						
							| 51 | 49 50 | jctir | ⊢ ( ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑐  ∈  𝑉 )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  𝑉  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3 ) ) | 
						
							| 52 |  | eleq1 | ⊢ ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑊  ∈  Word  𝑉  ↔  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  𝑉 ) ) | 
						
							| 53 |  | fveqeq2 | ⊢ ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( ♯ ‘ 𝑊 )  =  3  ↔  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3 ) ) | 
						
							| 54 | 52 53 | anbi12d | ⊢ ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  𝑉  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3 ) ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑐  ∈  𝑉 )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  𝑉  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3 ) ) ) | 
						
							| 56 | 51 55 | mpbird | ⊢ ( ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑐  ∈  𝑉 )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 ) ) | 
						
							| 57 | 56 | rexlimdva2 | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 ) ) ) | 
						
							| 58 | 57 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 ) ) | 
						
							| 59 | 47 58 | impbii | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  3 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) |