Step |
Hyp |
Ref |
Expression |
1 |
|
wrd2pr2op |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) |
2 |
|
fvex |
⊢ ( 𝑊 ‘ 0 ) ∈ V |
3 |
|
fvex |
⊢ ( 𝑊 ‘ 1 ) ∈ V |
4 |
|
s2prop |
⊢ ( ( ( 𝑊 ‘ 0 ) ∈ V ∧ ( 𝑊 ‘ 1 ) ∈ V ) → 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 = { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } ) |
5 |
4
|
eqcomd |
⊢ ( ( ( 𝑊 ‘ 0 ) ∈ V ∧ ( 𝑊 ‘ 1 ) ∈ V ) → { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) |
6 |
2 3 5
|
mp2an |
⊢ { 〈 0 , ( 𝑊 ‘ 0 ) 〉 , 〈 1 , ( 𝑊 ‘ 1 ) 〉 } = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 |
7 |
1 6
|
eqtrdi |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 2 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ( 𝑊 ‘ 1 ) ”〉 ) |