Metamath Proof Explorer


Theorem wrdlenge1n0

Description: A word with length at least 1 is not empty. (Contributed by AV, 14-Oct-2018)

Ref Expression
Assertion wrdlenge1n0 ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 hashneq0 ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 𝑊 ≠ ∅ ) )
2 lencl ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 )
3 2 nn0zd ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ )
4 zgt0ge1 ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) )
5 3 4 syl ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) )
6 1 5 bitr3d ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) )