| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red | ⊢ ( 𝑊  ∈  Word  𝑉  →  1  ∈  ℝ ) | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑊  ∈  Word  𝑉  →  2  ∈  ℝ ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0red | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 6 | 1 3 5 | 3jca | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 1  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 1  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  2  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 9 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 10 | 8 9 | jctil | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 1  <  2  ∧  2  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 11 |  | ltleletr | ⊢ ( ( 1  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ )  →  ( ( 1  <  2  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  1  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 12 | 7 10 11 | sylc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  1  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 13 |  | wrdlenge1n0 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ≠  ∅  ↔  1  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ≠  ∅  ↔  1  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑊  ≠  ∅ ) |