Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( 𝑊 ∈ Word 𝑉 → 1 ∈ ℝ ) |
2 |
|
2re |
⊢ 2 ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → 2 ∈ ℝ ) |
4 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
5 |
4
|
nn0red |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
6 |
1 3 5
|
3jca |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) ) |
8 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) |
9 |
|
1lt2 |
⊢ 1 < 2 |
10 |
8 9
|
jctil |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 1 < 2 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) ) |
11 |
|
ltleletr |
⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ ) → ( ( 1 < 2 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 1 ≤ ( ♯ ‘ 𝑊 ) ) ) |
12 |
7 10 11
|
sylc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 1 ≤ ( ♯ ‘ 𝑊 ) ) |
13 |
|
wrdlenge1n0 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ≠ ∅ ↔ 1 ≤ ( ♯ ‘ 𝑊 ) ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ≠ ∅ ) |