Metamath Proof Explorer


Theorem wrdlndm

Description: The length of a word is not in the domain of the word (regarded as a function). (Contributed by AV, 3-Mar-2021) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdlndm ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∉ dom 𝑊 )

Proof

Step Hyp Ref Expression
1 fzonel ¬ ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) )
2 1 a1i ( 𝑊 ∈ Word 𝑉 → ¬ ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
3 wrddm ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
4 2 3 neleqtrrd ( 𝑊 ∈ Word 𝑉 → ¬ ( ♯ ‘ 𝑊 ) ∈ dom 𝑊 )
5 df-nel ( ( ♯ ‘ 𝑊 ) ∉ dom 𝑊 ↔ ¬ ( ♯ ‘ 𝑊 ) ∈ dom 𝑊 )
6 4 5 sylibr ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∉ dom 𝑊 )