Metamath Proof Explorer


Theorem wrdmap

Description: Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Assertion wrdmap ( ( 𝑉𝑋𝑁 ∈ ℕ0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ 𝑊 ∈ ( 𝑉m ( 0 ..^ 𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 fveqeq2 ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) = 𝑁 ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) )
2 1 elrab ( 𝑊 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) )
3 wrdnval ( ( 𝑉𝑋𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑉m ( 0 ..^ 𝑁 ) ) )
4 3 eleq2d ( ( 𝑉𝑋𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ↔ 𝑊 ∈ ( 𝑉m ( 0 ..^ 𝑁 ) ) ) )
5 2 4 bitr3id ( ( 𝑉𝑋𝑁 ∈ ℕ0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ 𝑊 ∈ ( 𝑉m ( 0 ..^ 𝑁 ) ) ) )