Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
2 |
|
wrdf |
⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) |
3 |
|
ffn |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
4 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
5 |
|
fzossrbm1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
9 |
|
fnssresb |
⊢ ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
11 |
8 10
|
mpbird |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
12 |
|
hashfn |
⊢ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
14 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
15 |
|
nn0sub2 |
⊢ ( ( 1 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
16 |
14 15
|
mp3an1 |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
17 |
|
hashfzo0 |
⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
20 |
13 19
|
eqtrd |
⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
21 |
20
|
ex |
⊢ ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
22 |
2 3 21
|
3syl |
⊢ ( 𝐹 ∈ Word 𝑆 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
23 |
1 22
|
mpand |
⊢ ( 𝐹 ∈ Word 𝑆 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |