Step |
Hyp |
Ref |
Expression |
1 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
2 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
3 |
2
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
4 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) |
5 |
|
0zd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → 0 ∈ ℤ ) |
6 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
7 |
|
nelfzo |
⊢ ( ( 𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) ) |
9 |
8
|
biimpar |
⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) → 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
10 |
|
df-nel |
⊢ ( 𝐼 ∉ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
11 |
9 10
|
sylib |
⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) → ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
12 |
|
eleq2 |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ dom 𝑊 ↔ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
13 |
12
|
notbid |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
14 |
11 13
|
syl5ibr |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 ∈ ℤ ) ∧ ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) ) → ¬ 𝐼 ∈ dom 𝑊 ) ) |
15 |
14
|
exp4c |
⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 𝐼 ∈ ℤ → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ¬ 𝐼 ∈ dom 𝑊 ) ) ) ) |
16 |
1 3 15
|
sylc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐼 ∈ ℤ → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ¬ 𝐼 ∈ dom 𝑊 ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ¬ 𝐼 ∈ dom 𝑊 ) ) |
18 |
|
ndmfv |
⊢ ( ¬ 𝐼 ∈ dom 𝑊 → ( 𝑊 ‘ 𝐼 ) = ∅ ) |
19 |
17 18
|
syl6 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐼 ) → ( 𝑊 ‘ 𝐼 ) = ∅ ) ) |