Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
2 |
|
elnnnn0c |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) ) |
3 |
2
|
biimpri |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
5 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
6 |
4 5
|
sylibr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
7 |
|
wrdsymbcl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
8 |
6 7
|
syldan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |