Metamath Proof Explorer


Theorem wrdsymbcl

Description: A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018)

Ref Expression
Assertion wrdsymbcl ( ( 𝑊 ∈ Word 𝑉𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊𝐼 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 wrdf ( 𝑊 ∈ Word 𝑉𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑉 )
2 1 ffvelrnda ( ( 𝑊 ∈ Word 𝑉𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊𝐼 ) ∈ 𝑉 )