Metamath Proof Explorer


Theorem wrdt2ind

Description: Perform an induction over the structure of a word of even length. (Contributed by Thierry Arnoux, 26-Sep-2023)

Ref Expression
Hypotheses wrdt2ind.1 ( 𝑥 = ∅ → ( 𝜑𝜓 ) )
wrdt2ind.2 ( 𝑥 = 𝑦 → ( 𝜑𝜒 ) )
wrdt2ind.3 ( 𝑥 = ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) → ( 𝜑𝜃 ) )
wrdt2ind.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
wrdt2ind.5 𝜓
wrdt2ind.6 ( ( 𝑦 ∈ Word 𝐵𝑖𝐵𝑗𝐵 ) → ( 𝜒𝜃 ) )
Assertion wrdt2ind ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 wrdt2ind.1 ( 𝑥 = ∅ → ( 𝜑𝜓 ) )
2 wrdt2ind.2 ( 𝑥 = 𝑦 → ( 𝜑𝜒 ) )
3 wrdt2ind.3 ( 𝑥 = ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) → ( 𝜑𝜃 ) )
4 wrdt2ind.4 ( 𝑥 = 𝐴 → ( 𝜑𝜏 ) )
5 wrdt2ind.5 𝜓
6 wrdt2ind.6 ( ( 𝑦 ∈ Word 𝐵𝑖𝐵𝑗𝐵 ) → ( 𝜒𝜃 ) )
7 oveq2 ( 𝑛 = 0 → ( 2 · 𝑛 ) = ( 2 · 0 ) )
8 7 eqeq1d ( 𝑛 = 0 → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ) )
9 8 imbi1d ( 𝑛 = 0 → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
10 9 ralbidv ( 𝑛 = 0 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
11 oveq2 ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) )
12 11 eqeq1d ( 𝑛 = 𝑘 → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) ) )
13 12 imbi1d ( 𝑛 = 𝑘 → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
14 13 ralbidv ( 𝑛 = 𝑘 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
15 oveq2 ( 𝑛 = ( 𝑘 + 1 ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑘 + 1 ) ) )
16 15 eqeq1d ( 𝑛 = ( 𝑘 + 1 ) → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) )
17 16 imbi1d ( 𝑛 = ( 𝑘 + 1 ) → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
18 17 ralbidv ( 𝑛 = ( 𝑘 + 1 ) → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
19 oveq2 ( 𝑛 = 𝑚 → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) )
20 19 eqeq1d ( 𝑛 = 𝑚 → ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) ) )
21 20 imbi1d ( 𝑛 = 𝑚 → ( ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
22 21 ralbidv ( 𝑛 = 𝑚 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑛 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
23 2t0e0 ( 2 · 0 ) = 0
24 23 eqeq1i ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ↔ 0 = ( ♯ ‘ 𝑥 ) )
25 eqcom ( 0 = ( ♯ ‘ 𝑥 ) ↔ ( ♯ ‘ 𝑥 ) = 0 )
26 24 25 bitri ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ↔ ( ♯ ‘ 𝑥 ) = 0 )
27 hasheq0 ( 𝑥 ∈ Word 𝐵 → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) )
28 26 27 syl5bb ( 𝑥 ∈ Word 𝐵 → ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) ↔ 𝑥 = ∅ ) )
29 5 1 mpbiri ( 𝑥 = ∅ → 𝜑 )
30 28 29 syl6bi ( 𝑥 ∈ Word 𝐵 → ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) )
31 30 rgen 𝑥 ∈ Word 𝐵 ( ( 2 · 0 ) = ( ♯ ‘ 𝑥 ) → 𝜑 )
32 fveq2 ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) )
33 32 eqeq2d ( 𝑥 = 𝑦 → ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) ) )
34 33 2 imbi12d ( 𝑥 = 𝑦 → ( ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) )
35 34 cbvralvw ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) )
36 simprl ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ Word 𝐵 )
37 0zd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ∈ ℤ )
38 lencl ( 𝑥 ∈ Word 𝐵 → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
39 36 38 syl ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
40 39 nn0zd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℤ )
41 2z 2 ∈ ℤ
42 41 a1i ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℤ )
43 40 42 zsubcld ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℤ )
44 2re 2 ∈ ℝ
45 44 a1i ( 𝑘 ∈ ℕ0 → 2 ∈ ℝ )
46 nn0re ( 𝑘 ∈ ℕ0𝑘 ∈ ℝ )
47 0le2 0 ≤ 2
48 47 a1i ( 𝑘 ∈ ℕ0 → 0 ≤ 2 )
49 nn0ge0 ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 )
50 45 46 48 49 mulge0d ( 𝑘 ∈ ℕ0 → 0 ≤ ( 2 · 𝑘 ) )
51 50 adantr ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ ( 2 · 𝑘 ) )
52 2cnd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℂ )
53 simpl ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ0 )
54 53 nn0cnd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℂ )
55 1cnd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ∈ ℂ )
56 52 54 55 adddid ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) )
57 simprr ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) )
58 2t1e2 ( 2 · 1 ) = 2
59 58 a1i ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 1 ) = 2 )
60 59 oveq2d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) )
61 56 57 60 3eqtr3d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ( 2 · 𝑘 ) + 2 ) )
62 61 oveq1d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) = ( ( ( 2 · 𝑘 ) + 2 ) − 2 ) )
63 52 54 mulcld ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) ∈ ℂ )
64 63 52 pncand ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( 2 · 𝑘 ) + 2 ) − 2 ) = ( 2 · 𝑘 ) )
65 62 64 eqtrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) = ( 2 · 𝑘 ) )
66 51 65 breqtrrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ ( ( ♯ ‘ 𝑥 ) − 2 ) )
67 43 zred ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℝ )
68 39 nn0red ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℝ )
69 2pos 0 < 2
70 44 a1i ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℝ )
71 70 68 ltsubposd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 < 2 ↔ ( ( ♯ ‘ 𝑥 ) − 2 ) < ( ♯ ‘ 𝑥 ) ) )
72 69 71 mpbii ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) < ( ♯ ‘ 𝑥 ) )
73 67 68 72 ltled ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ≤ ( ♯ ‘ 𝑥 ) )
74 37 40 43 66 73 elfzd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) )
75 pfxlen ( ( 𝑥 ∈ Word 𝐵 ∧ ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) = ( ( ♯ ‘ 𝑥 ) − 2 ) )
76 36 74 75 syl2anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) = ( ( ♯ ‘ 𝑥 ) − 2 ) )
77 76 65 eqtr2d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) )
78 77 adantlr ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) )
79 fveq2 ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) )
80 79 eqeq2d ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) ↔ ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) ) )
81 vex 𝑦 ∈ V
82 81 2 sbcie ( [ 𝑦 / 𝑥 ] 𝜑𝜒 )
83 dfsbcq ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑[ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) )
84 82 83 bitr3id ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( 𝜒[ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) )
85 80 84 imbi12d ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ↔ ( ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) → [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) ) )
86 simplr ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) )
87 pfxcl ( 𝑥 ∈ Word 𝐵 → ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ Word 𝐵 )
88 87 ad2antrl ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ Word 𝐵 )
89 85 86 88 rspcdva ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( 2 · 𝑘 ) = ( ♯ ‘ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ) → [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 ) )
90 78 89 mpd ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑 )
91 2nn0 2 ∈ ℕ0
92 91 a1i ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℕ0 )
93 52 addid2d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 + 2 ) = 2 )
94 0red ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ∈ ℝ )
95 65 67 eqeltrrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 𝑘 ) ∈ ℝ )
96 94 95 70 51 leadd1dd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 + 2 ) ≤ ( ( 2 · 𝑘 ) + 2 ) )
97 93 96 eqbrtrrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ( 2 · 𝑘 ) + 2 ) )
98 97 61 breqtrrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) )
99 nn0sub ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 ) )
100 99 biimpa ( ( ( 2 ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 )
101 92 39 98 100 syl21anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 )
102 68 recnd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℂ )
103 102 52 55 subsubd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) )
104 2m1e1 ( 2 − 1 ) = 1
105 104 a1i ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 − 1 ) = 1 )
106 105 oveq2d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑥 ) − 1 ) )
107 103 106 eqtr3d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) = ( ( ♯ ‘ 𝑥 ) − 1 ) )
108 68 lem1d ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ≤ ( ♯ ‘ 𝑥 ) )
109 107 108 eqbrtrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) )
110 nn0p1elfzo ( ( ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑥 ) − 2 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) )
111 101 39 109 110 syl3anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) )
112 wrdsymbcl ( ( 𝑥 ∈ Word 𝐵 ∧ ( ( ♯ ‘ 𝑥 ) − 2 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 )
113 36 111 112 syl2anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 )
114 113 adantlr ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 )
115 nn0ge2m1nn0 ( ( ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ℕ0 )
116 39 98 115 syl2anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ℕ0 )
117 102 55 npcand ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 1 ) + 1 ) = ( ♯ ‘ 𝑥 ) )
118 68 leidd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑥 ) )
119 117 118 eqbrtrd ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ( ♯ ‘ 𝑥 ) − 1 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) )
120 nn0p1elfzo ( ( ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ ( ( ( ♯ ‘ 𝑥 ) − 1 ) + 1 ) ≤ ( ♯ ‘ 𝑥 ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) )
121 116 39 119 120 syl3anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) )
122 wrdsymbcl ( ( 𝑥 ∈ Word 𝐵 ∧ ( ( ♯ ‘ 𝑥 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 )
123 36 121 122 syl2anc ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 )
124 123 adantlr ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 )
125 oveq1 ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ 𝑖 𝑗 ”⟩ ) )
126 125 sbceq1d ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( [ ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) )
127 83 126 imbi12d ( 𝑦 = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( [ 𝑦 / 𝑥 ] 𝜑[ ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) ) )
128 id ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) )
129 eqidd ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → 𝑗 = 𝑗 )
130 128 129 s2eqd ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ⟨“ 𝑖 𝑗 ”⟩ = ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ )
131 130 oveq2d ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ 𝑖 𝑗 ”⟩ ) = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ ) )
132 131 sbceq1d ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) )
133 132 imbi2d ( 𝑖 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) → ( ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) ) )
134 eqidd ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) )
135 id ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) )
136 134 135 s2eqd ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ = ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ )
137 136 oveq2d ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ ) = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) )
138 137 sbceq1d ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 ) )
139 138 imbi2d ( 𝑗 = ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) → ( ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 ) ) )
140 ovex ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) ∈ V
141 140 3 sbcie ( [ ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑𝜃 )
142 6 82 141 3imtr4g ( ( 𝑦 ∈ Word 𝐵𝑖𝐵𝑗𝐵 ) → ( [ 𝑦 / 𝑥 ] 𝜑[ ( 𝑦 ++ ⟨“ 𝑖 𝑗 ”⟩ ) / 𝑥 ] 𝜑 ) )
143 127 133 139 142 vtocl3ga ( ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ Word 𝐵 ∧ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ∈ 𝐵 ∧ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ 𝐵 ) → ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 ) )
144 88 114 124 143 syl3anc ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( [ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) / 𝑥 ] 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 ) )
145 90 144 mpd ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → [ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 )
146 simprl ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ Word 𝐵 )
147 1red ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ∈ ℝ )
148 simpll ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ0 )
149 148 nn0red ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℝ )
150 149 147 readdcld ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝑘 + 1 ) ∈ ℝ )
151 44 a1i ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ∈ ℝ )
152 47 a1i ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ 2 )
153 0p1e1 ( 0 + 1 ) = 1
154 0red ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ∈ ℝ )
155 148 nn0ge0d ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 0 ≤ 𝑘 )
156 147 leidd ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ≤ 1 )
157 154 147 149 147 155 156 le2addd ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 0 + 1 ) ≤ ( 𝑘 + 1 ) )
158 153 157 eqbrtrrid ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑘 + 1 ) )
159 147 150 151 152 158 lemul2ad ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · 1 ) ≤ ( 2 · ( 𝑘 + 1 ) ) )
160 58 159 eqbrtrrid ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( 2 · ( 𝑘 + 1 ) ) )
161 simprr ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) )
162 160 161 breqtrd ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) )
163 eqid ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑥 )
164 163 pfxlsw2ccat ( ( 𝑥 ∈ Word 𝐵 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) )
165 164 eqcomd ( ( 𝑥 ∈ Word 𝐵 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) = 𝑥 )
166 165 eqcomd ( ( 𝑥 ∈ Word 𝐵 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) )
167 146 162 166 syl2anc ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) )
168 sbceq1a ( 𝑥 = ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) → ( 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 ) )
169 167 168 syl ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → ( 𝜑[ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 2 ) ) ++ ⟨“ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 2 ) ) ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ”⟩ ) / 𝑥 ] 𝜑 ) )
170 145 169 mpbird ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ ( 𝑥 ∈ Word 𝐵 ∧ ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) ) ) → 𝜑 )
171 170 expr ( ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) ∧ 𝑥 ∈ Word 𝐵 ) → ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) )
172 171 ralrimiva ( ( 𝑘 ∈ ℕ0 ∧ ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) )
173 172 ex ( 𝑘 ∈ ℕ0 → ( ∀ 𝑦 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑦 ) → 𝜒 ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
174 35 173 syl5bi ( 𝑘 ∈ ℕ0 → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑘 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · ( 𝑘 + 1 ) ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ) )
175 10 14 18 22 31 174 nn0ind ( 𝑚 ∈ ℕ0 → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) )
176 175 adantl ( ( 𝐴 ∈ Word 𝐵𝑚 ∈ ℕ0 ) → ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) )
177 simpl ( ( 𝐴 ∈ Word 𝐵𝑚 ∈ ℕ0 ) → 𝐴 ∈ Word 𝐵 )
178 fveq2 ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) )
179 178 eqeq2d ( 𝑥 = 𝐴 → ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) ↔ ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) )
180 179 4 imbi12d ( 𝑥 = 𝐴 → ( ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) )
181 180 adantl ( ( ( 𝐴 ∈ Word 𝐵𝑚 ∈ ℕ0 ) ∧ 𝑥 = 𝐴 ) → ( ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) ↔ ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) )
182 177 181 rspcdv ( ( 𝐴 ∈ Word 𝐵𝑚 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ Word 𝐵 ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝑥 ) → 𝜑 ) → ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) ) )
183 176 182 mpd ( ( 𝐴 ∈ Word 𝐵𝑚 ∈ ℕ0 ) → ( ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) → 𝜏 ) )
184 183 imp ( ( ( 𝐴 ∈ Word 𝐵𝑚 ∈ ℕ0 ) ∧ ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) → 𝜏 )
185 184 adantllr ( ( ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) → 𝜏 )
186 lencl ( 𝐴 ∈ Word 𝐵 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
187 evennn02n ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 2 ∥ ( ♯ ‘ 𝐴 ) ↔ ∃ 𝑚 ∈ ℕ0 ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) ) )
188 187 biimpa ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → ∃ 𝑚 ∈ ℕ0 ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) )
189 186 188 sylan ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → ∃ 𝑚 ∈ ℕ0 ( 2 · 𝑚 ) = ( ♯ ‘ 𝐴 ) )
190 185 189 r19.29a ( ( 𝐴 ∈ Word 𝐵 ∧ 2 ∥ ( ♯ ‘ 𝐴 ) ) → 𝜏 )