Step |
Hyp |
Ref |
Expression |
1 |
|
wspn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wspthsn |
⊢ ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } |
3 |
|
wwlknbp1 |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
4 |
1
|
eqeq1i |
⊢ ( 𝑉 = ∅ ↔ ( Vtx ‘ 𝐺 ) = ∅ ) |
5 |
|
wrdeq |
⊢ ( ( Vtx ‘ 𝐺 ) = ∅ → Word ( Vtx ‘ 𝐺 ) = Word ∅ ) |
6 |
4 5
|
sylbi |
⊢ ( 𝑉 = ∅ → Word ( Vtx ‘ 𝐺 ) = Word ∅ ) |
7 |
6
|
eleq2d |
⊢ ( 𝑉 = ∅ → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 𝑤 ∈ Word ∅ ) ) |
8 |
|
0wrd0 |
⊢ ( 𝑤 ∈ Word ∅ ↔ 𝑤 = ∅ ) |
9 |
7 8
|
bitrdi |
⊢ ( 𝑉 = ∅ → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 𝑤 = ∅ ) ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) |
11 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
12 |
10 11
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ↔ 0 = ( 𝑁 + 1 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 = ∅ ) → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ↔ 0 = ( 𝑁 + 1 ) ) ) |
15 |
|
nn0p1gt0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 1 ) ) |
16 |
15
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ≠ 0 ) |
17 |
|
eqneqall |
⊢ ( ( 𝑁 + 1 ) = 0 → ( ( 𝑁 + 1 ) ≠ 0 → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
18 |
17
|
eqcoms |
⊢ ( 0 = ( 𝑁 + 1 ) → ( ( 𝑁 + 1 ) ≠ 0 → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
19 |
16 18
|
syl5com |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 = ( 𝑁 + 1 ) → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 = ∅ ) → ( 0 = ( 𝑁 + 1 ) → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
21 |
14 20
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 = ∅ ) → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
22 |
21
|
expcom |
⊢ ( 𝑤 = ∅ → ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) |
23 |
22
|
com23 |
⊢ ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ0 → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) |
24 |
9 23
|
syl6bi |
⊢ ( 𝑉 = ∅ → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ0 → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) ) |
25 |
24
|
com14 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( 𝑉 = ∅ → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) ) ) |
26 |
25
|
3imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) → ( 𝑉 = ∅ → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
27 |
3 26
|
syl |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑉 = ∅ → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
28 |
27
|
impcom |
⊢ ( ( 𝑉 = ∅ ∧ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) |
29 |
28
|
ralrimiva |
⊢ ( 𝑉 = ∅ → ∀ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) |
30 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ ↔ ∀ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ¬ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) |
31 |
29 30
|
sylibr |
⊢ ( 𝑉 = ∅ → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ ) |
32 |
2 31
|
syl5eq |
⊢ ( 𝑉 = ∅ → ( 𝑁 WSPathsN 𝐺 ) = ∅ ) |