Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
wspthnonp |
⊢ ( 𝑃 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) ) |
3 |
1
|
wspthnonp |
⊢ ( 𝑃 ∈ ( 𝐶 ( 𝑁 WSPathsNOn 𝐺 ) 𝐷 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐶 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( 𝐶 ( 𝑁 WWalksNOn 𝐺 ) 𝐷 ) ∧ ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) ) |
4 |
|
simp3r |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) → ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
5 |
|
simp3r |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐶 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( 𝐶 ( 𝑁 WWalksNOn 𝐺 ) 𝐷 ) ∧ ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) → ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |
6 |
|
spthonpthon |
⊢ ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
7 |
|
spthonpthon |
⊢ ( ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |
8 |
6 7
|
anim12i |
⊢ ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) → ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) |
9 |
|
pthontrlon |
⊢ ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
10 |
|
pthontrlon |
⊢ ( ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ℎ ( 𝐶 ( TrailsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |
11 |
|
trlsonwlkon |
⊢ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) |
12 |
|
trlsonwlkon |
⊢ ( ℎ ( 𝐶 ( TrailsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |
13 |
11 12
|
anim12i |
⊢ ( ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( TrailsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) → ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) |
14 |
9 10 13
|
syl2an |
⊢ ( ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( PathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) → ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) |
15 |
|
wlksoneq1eq2 |
⊢ ( ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
16 |
8 14 15
|
3syl |
⊢ ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
17 |
16
|
expcom |
⊢ ( ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
18 |
17
|
exlimiv |
⊢ ( ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
19 |
18
|
com12 |
⊢ ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
20 |
19
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
21 |
20
|
imp |
⊢ ( ( ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
22 |
4 5 21
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) ∧ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐶 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑃 ∈ ( 𝐶 ( 𝑁 WWalksNOn 𝐺 ) 𝐷 ) ∧ ∃ ℎ ℎ ( 𝐶 ( SPathsOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
23 |
2 3 22
|
syl2an |
⊢ ( ( 𝑃 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ 𝑃 ∈ ( 𝐶 ( 𝑁 WSPathsNOn 𝐺 ) 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |