Metamath Proof Explorer


Theorem wspthnfi

Description: In a finite graph, the set of simple paths of a fixed length is finite. (Contributed by Alexander van der Vekens, 4-Mar-2018) (Revised by AV, 18-May-2021)

Ref Expression
Assertion wspthnfi ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WSPathsN 𝐺 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 wwlksnfi ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin )
2 wspthsswwlkn ( 𝑁 WSPathsN 𝐺 ) ⊆ ( 𝑁 WWalksN 𝐺 )
3 2 a1i ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WSPathsN 𝐺 ) ⊆ ( 𝑁 WWalksN 𝐺 ) )
4 1 3 ssfid ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WSPathsN 𝐺 ) ∈ Fin )