Metamath Proof Explorer


Theorem wspthnonfi

Description: In a finite graph, the set of simple paths of a fixed length between two vertices is finite. (Contributed by Alexander van der Vekens, 4-Mar-2018) (Revised by AV, 15-May-2021)

Ref Expression
Assertion wspthnonfi ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 wwlksnonfi ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∈ Fin )
2 wspthsswwlknon ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ⊆ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 )
3 2 a1i ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ⊆ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) )
4 1 3 ssfid ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∈ Fin )