Metamath Proof Explorer


Theorem wspthnonp

Description: Properties of a set being a simple path of a fixed length between two vertices as word. (Contributed by AV, 14-May-2021) (Proof shortened by AV, 15-Mar-2022)

Ref Expression
Hypothesis wspthnonp.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion wspthnonp ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 wspthnonp.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fvex ( Vtx ‘ 𝑔 ) ∈ V
3 2 2 pm3.2i ( ( Vtx ‘ 𝑔 ) ∈ V ∧ ( Vtx ‘ 𝑔 ) ∈ V )
4 3 rgen2w 𝑛 ∈ ℕ0𝑔 ∈ V ( ( Vtx ‘ 𝑔 ) ∈ V ∧ ( Vtx ‘ 𝑔 ) ∈ V )
5 df-wspthsnon WSPathsNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) )
6 fveq2 ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
7 6 6 jca ( 𝑔 = 𝐺 → ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) )
8 7 adantl ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) )
9 5 8 el2mpocl ( ∀ 𝑛 ∈ ℕ0𝑔 ∈ V ( ( Vtx ‘ 𝑔 ) ∈ V ∧ ( Vtx ‘ 𝑔 ) ∈ V ) → ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) )
10 4 9 ax-mp ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) )
11 simprl ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝑁 ∈ ℕ0𝐺 ∈ V ) )
12 1 eleq2i ( 𝐴𝑉𝐴 ∈ ( Vtx ‘ 𝐺 ) )
13 1 eleq2i ( 𝐵𝑉𝐵 ∈ ( Vtx ‘ 𝐺 ) )
14 12 13 anbi12i ( ( 𝐴𝑉𝐵𝑉 ) ↔ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) )
15 14 biimpri ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐴𝑉𝐵𝑉 ) )
16 15 adantl ( ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐴𝑉𝐵𝑉 ) )
17 16 adantl ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝐴𝑉𝐵𝑉 ) )
18 wspthnon ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ↔ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) )
19 18 biimpi ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) )
20 19 adantr ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) )
21 11 17 20 3jca ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) )
22 10 21 mpdan ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0𝐺 ∈ V ) ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) )