Step |
Hyp |
Ref |
Expression |
1 |
|
wspthnonp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
3 |
2 2
|
pm3.2i |
⊢ ( ( Vtx ‘ 𝑔 ) ∈ V ∧ ( Vtx ‘ 𝑔 ) ∈ V ) |
4 |
3
|
rgen2w |
⊢ ∀ 𝑛 ∈ ℕ0 ∀ 𝑔 ∈ V ( ( Vtx ‘ 𝑔 ) ∈ V ∧ ( Vtx ‘ 𝑔 ) ∈ V ) |
5 |
|
df-wspthsnon |
⊢ WSPathsNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑎 ( 𝑛 WWalksNOn 𝑔 ) 𝑏 ) ∣ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) |
6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
7 |
6 6
|
jca |
⊢ ( 𝑔 = 𝐺 → ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) ) |
9 |
5 8
|
el2mpocl |
⊢ ( ∀ 𝑛 ∈ ℕ0 ∀ 𝑔 ∈ V ( ( Vtx ‘ 𝑔 ) ∈ V ∧ ( Vtx ‘ 𝑔 ) ∈ V ) → ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) ) |
10 |
4 9
|
ax-mp |
⊢ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
11 |
|
simprl |
⊢ ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) |
12 |
1
|
eleq2i |
⊢ ( 𝐴 ∈ 𝑉 ↔ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
13 |
1
|
eleq2i |
⊢ ( 𝐵 ∈ 𝑉 ↔ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
14 |
12 13
|
anbi12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ↔ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) |
15 |
14
|
biimpri |
⊢ ( ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
18 |
|
wspthnon |
⊢ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ↔ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) |
19 |
18
|
biimpi |
⊢ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) |
21 |
11 17 20
|
3jca |
⊢ ( ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) ∧ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) ) |
22 |
10 21
|
mpdan |
⊢ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WSPathsNOn 𝐺 ) 𝐵 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∧ ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑊 ) ) ) |