Step |
Hyp |
Ref |
Expression |
1 |
|
df-wspthsn |
⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) |
2 |
1
|
elmpocl |
⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) |
3 |
|
simpl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ) → ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ) |
4 |
|
iswspthn |
⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
5 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) ) |
6 |
5
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
7 |
|
3anass |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) ) |
8 |
3 6 7
|
sylanbrc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
9 |
2 8
|
mpancom |
⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |