Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( 𝑛 WWalksN 𝑔 ) = ( 𝑁 WWalksN 𝐺 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( SPaths ‘ 𝑔 ) = ( SPaths ‘ 𝐺 ) ) |
3 |
2
|
breqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
4 |
3
|
exbidv |
⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
6 |
1 5
|
rabeqbidv |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
7 |
|
df-wspthsn |
⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) |
8 |
|
ovex |
⊢ ( 𝑁 WWalksN 𝐺 ) ∈ V |
9 |
8
|
rabex |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ∈ V |
10 |
6 7 9
|
ovmpoa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
11 |
7
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = ∅ ) |
12 |
|
df-wwlksn |
⊢ WWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( WWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑛 + 1 ) } ) |
13 |
12
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
14 |
13
|
rabeqdv |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
15 |
|
rab0 |
⊢ { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ |
16 |
14 15
|
eqtrdi |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ ) |
17 |
11 16
|
eqtr4d |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
18 |
10 17
|
pm2.61i |
⊢ ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } |