| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( 𝑛  WWalksN  𝑔 )  =  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( SPaths ‘ 𝑔 )  =  ( SPaths ‘ 𝐺 ) ) | 
						
							| 3 | 2 | breqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( SPaths ‘ 𝑔 ) 𝑤  ↔  𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 4 | 3 | exbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤  ↔  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤  ↔  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) | 
						
							| 6 | 1 5 | rabeqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) | 
						
							| 7 |  | df-wspthsn | ⊢  WSPathsN   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) | 
						
							| 8 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 9 | 8 | rabex | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }  ∈  V | 
						
							| 10 | 6 7 9 | ovmpoa | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WSPathsN  𝐺 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) | 
						
							| 11 | 7 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WSPathsN  𝐺 )  =  ∅ ) | 
						
							| 12 |  | df-wwlksn | ⊢  WWalksN   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  { 𝑤  ∈  ( WWalks ‘ 𝑔 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 ) } ) | 
						
							| 13 | 12 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WWalksN  𝐺 )  =  ∅ ) | 
						
							| 14 | 13 | rabeqdv | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }  =  { 𝑤  ∈  ∅  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) | 
						
							| 15 |  | rab0 | ⊢ { 𝑤  ∈  ∅  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }  =  ∅ | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }  =  ∅ ) | 
						
							| 17 | 11 16 | eqtr4d | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WSPathsN  𝐺 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) | 
						
							| 18 | 10 17 | pm2.61i | ⊢ ( 𝑁  WSPathsN  𝐺 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } |