Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) ≠ ∅ ↔ ∃ 𝑝 𝑝 ∈ ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2
|
wspthnonp |
⊢ ( 𝑝 ∈ ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑝 ∈ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑌 ) ∧ ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 ) ) ) |
4 |
|
wwlknon |
⊢ ( 𝑝 ∈ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑌 ) ↔ ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑝 ‘ 0 ) = 𝑋 ∧ ( 𝑝 ‘ 𝑁 ) = 𝑌 ) ) |
5 |
|
iswwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑝 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) ) ) ) |
6 |
|
spthonisspth |
⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ) |
7 |
|
spthispth |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝 → 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) |
8 |
|
pthiswlk |
⊢ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
9 |
|
wlklenvm1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑝 ) − 1 ) ) |
10 |
6 7 8 9
|
4syl |
⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑝 ) − 1 ) ) |
11 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑝 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
12 |
11
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑝 ) − 1 ) ↔ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) ) |
13 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) → ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
14 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
15 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
16 |
14 15
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
18 |
13 17
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) → ( ♯ ‘ 𝑓 ) = 𝑁 ) |
19 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
20 |
19
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) → 𝑁 ≠ 0 ) |
21 |
18 20
|
eqnetrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) → ( ♯ ‘ 𝑓 ) ≠ 0 ) |
22 |
|
spthonepeq |
⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑋 = 𝑌 ↔ ( ♯ ‘ 𝑓 ) = 0 ) ) |
23 |
22
|
necon3bid |
⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑋 ≠ 𝑌 ↔ ( ♯ ‘ 𝑓 ) ≠ 0 ) ) |
24 |
21 23
|
syl5ibrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) ) → ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → 𝑋 ≠ 𝑌 ) ) |
25 |
24
|
expcom |
⊢ ( ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) → ( 𝑁 ∈ ℕ → ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → 𝑋 ≠ 𝑌 ) ) ) |
26 |
25
|
com23 |
⊢ ( ( ♯ ‘ 𝑓 ) = ( ( 𝑁 + 1 ) − 1 ) → ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) |
27 |
12 26
|
biimtrdi |
⊢ ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑝 ) − 1 ) → ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
28 |
27
|
com13 |
⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑝 ) − 1 ) → ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
29 |
10 28
|
mpd |
⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) |
30 |
29
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) |
31 |
30
|
com12 |
⊢ ( ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝑝 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = ( 𝑁 + 1 ) ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) |
33 |
5 32
|
biimtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
36 |
35
|
com12 |
⊢ ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑝 ‘ 0 ) = 𝑋 ∧ ( 𝑝 ‘ 𝑁 ) = 𝑌 ) → ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
38 |
37
|
com12 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑝 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑝 ‘ 0 ) = 𝑋 ∧ ( 𝑝 ‘ 𝑁 ) = 𝑌 ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
39 |
4 38
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( 𝑝 ∈ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑌 ) → ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) ) |
40 |
39
|
impd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ) → ( ( 𝑝 ∈ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑌 ) ∧ ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) ) |
41 |
40
|
3impia |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑝 ∈ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑌 ) ∧ ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 ) ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) |
42 |
3 41
|
syl |
⊢ ( 𝑝 ∈ ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) |
43 |
42
|
exlimiv |
⊢ ( ∃ 𝑝 𝑝 ∈ ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) |
44 |
1 43
|
sylbi |
⊢ ( ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) ≠ ∅ → ( 𝑁 ∈ ℕ → 𝑋 ≠ 𝑌 ) ) |
45 |
44
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑋 ( 𝑁 WSPathsNOn 𝐺 ) 𝑌 ) ≠ ∅ ) → 𝑋 ≠ 𝑌 ) |