Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnwwlksnon.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
iswspthn |
⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
3 |
1
|
wwlksnwwlksnon |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
5 |
|
r19.41vv |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
6 |
4 5
|
bitr4i |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) |
7 |
|
3anass |
⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
8 |
7
|
a1i |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) ) |
9 |
|
vex |
⊢ 𝑓 ∈ V |
10 |
1
|
isspthonpth |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑓 ∈ V ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
11 |
9 10
|
mpanr1 |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
12 |
|
spthiswlk |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 → 𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) |
13 |
|
wlklenvm1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊 → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
14 |
|
wwlknon |
⊢ ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ) |
15 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( 𝑊 ‘ 0 ) = 𝑎 ) |
16 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
17 |
|
wwlknbp1 |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) |
18 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
20 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
21 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
22 |
20 21
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
24 |
19 23
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
25 |
17 24
|
syl |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
28 |
16 27
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ♯ ‘ 𝑓 ) = 𝑁 ) |
29 |
28
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = ( 𝑊 ‘ 𝑁 ) ) |
30 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( 𝑊 ‘ 𝑁 ) = 𝑏 ) |
31 |
29 30
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) |
32 |
15 31
|
jca |
⊢ ( ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) ∧ ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) |
33 |
32
|
ex |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ 𝑁 ) = 𝑏 ) → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
34 |
14 33
|
sylbi |
⊢ ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
36 |
35
|
com12 |
⊢ ( ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
37 |
12 13 36
|
3syl |
⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
38 |
37
|
com12 |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 → ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) |
39 |
38
|
pm4.71d |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ↔ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ∧ ( ( 𝑊 ‘ 0 ) = 𝑎 ∧ ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) ) ) ) |
40 |
8 11 39
|
3bitr4rd |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ↔ 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) |
41 |
40
|
exbidv |
⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ) → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ↔ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) |
42 |
41
|
pm5.32da |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) ) |
43 |
|
wspthnon |
⊢ ( 𝑊 ∈ ( 𝑎 ( 𝑁 WSPathsNOn 𝐺 ) 𝑏 ) ↔ ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) |
44 |
42 43
|
bitr4di |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ 𝑊 ∈ ( 𝑎 ( 𝑁 WSPathsNOn 𝐺 ) 𝑏 ) ) ) |
45 |
44
|
2rexbiia |
⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑊 ∈ ( 𝑎 ( 𝑁 WWalksNOn 𝐺 ) 𝑏 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 𝑁 WSPathsNOn 𝐺 ) 𝑏 ) ) |
46 |
2 6 45
|
3bitri |
⊢ ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑊 ∈ ( 𝑎 ( 𝑁 WSPathsNOn 𝐺 ) 𝑏 ) ) |