| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 |  | iswun | ⊢ ( 𝑈  ∈  WUni  →  ( 𝑈  ∈  WUni  ↔  ( Tr  𝑈  ∧  𝑈  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑈 ( ∪  𝑥  ∈  𝑈  ∧  𝒫  𝑥  ∈  𝑈  ∧  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) ) ) | 
						
							| 3 | 2 | ibi | ⊢ ( 𝑈  ∈  WUni  →  ( Tr  𝑈  ∧  𝑈  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑈 ( ∪  𝑥  ∈  𝑈  ∧  𝒫  𝑥  ∈  𝑈  ∧  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) ) | 
						
							| 4 | 3 | simp2d | ⊢ ( 𝑈  ∈  WUni  →  𝑈  ≠  ∅ ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  𝑈  ≠  ∅ ) | 
						
							| 6 |  | n0 | ⊢ ( 𝑈  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝑈 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  𝑈 ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝑈  ∈  WUni ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  𝑥  ∈  𝑈 ) | 
						
							| 10 |  | 0ss | ⊢ ∅  ⊆  𝑥 | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  ∅  ⊆  𝑥 ) | 
						
							| 12 | 8 9 11 | wunss | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑈 )  →  ∅  ∈  𝑈 ) | 
						
							| 13 | 7 12 | exlimddv | ⊢ ( 𝜑  →  ∅  ∈  𝑈 ) |