Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
iswun |
⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
3 |
2
|
ibi |
⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
4 |
3
|
simp2d |
⊢ ( 𝑈 ∈ WUni → 𝑈 ≠ ∅ ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
6 |
|
n0 |
⊢ ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑈 ) |
7 |
5 6
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝑈 ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑈 ∈ WUni ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
10 |
|
0ss |
⊢ ∅ ⊆ 𝑥 |
11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∅ ⊆ 𝑥 ) |
12 |
8 9 11
|
wunss |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ∅ ∈ 𝑈 ) |
13 |
7 12
|
exlimddv |
⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |