Metamath Proof Explorer


Theorem wun0

Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wun0.1 ( 𝜑𝑈 ∈ WUni )
Assertion wun0 ( 𝜑 → ∅ ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 iswun ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
3 2 ibi ( 𝑈 ∈ WUni → ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
4 3 simp2d ( 𝑈 ∈ WUni → 𝑈 ≠ ∅ )
5 1 4 syl ( 𝜑𝑈 ≠ ∅ )
6 n0 ( 𝑈 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑈 )
7 5 6 sylib ( 𝜑 → ∃ 𝑥 𝑥𝑈 )
8 1 adantr ( ( 𝜑𝑥𝑈 ) → 𝑈 ∈ WUni )
9 simpr ( ( 𝜑𝑥𝑈 ) → 𝑥𝑈 )
10 0ss ∅ ⊆ 𝑥
11 10 a1i ( ( 𝜑𝑥𝑈 ) → ∅ ⊆ 𝑥 )
12 8 9 11 wunss ( ( 𝜑𝑥𝑈 ) → ∅ ∈ 𝑈 )
13 7 12 exlimddv ( 𝜑 → ∅ ∈ 𝑈 )