Metamath Proof Explorer


Theorem wunccl

Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wunccl ( 𝐴𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni )

Proof

Step Hyp Ref Expression
1 wuncval ( 𝐴𝑉 → ( wUniCl ‘ 𝐴 ) = { 𝑢 ∈ WUni ∣ 𝐴𝑢 } )
2 ssrab2 { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ⊆ WUni
3 wunex ( 𝐴𝑉 → ∃ 𝑢 ∈ WUni 𝐴𝑢 )
4 rabn0 ( { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ≠ ∅ ↔ ∃ 𝑢 ∈ WUni 𝐴𝑢 )
5 3 4 sylibr ( 𝐴𝑉 → { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ≠ ∅ )
6 intwun ( ( { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ⊆ WUni ∧ { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ≠ ∅ ) → { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ∈ WUni )
7 2 5 6 sylancr ( 𝐴𝑉 { 𝑢 ∈ WUni ∣ 𝐴𝑢 } ∈ WUni )
8 1 7 eqeltrd ( 𝐴𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni )