Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | wunccl | ⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wuncval | ⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) = ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) | |
2 | ssrab2 | ⊢ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ⊆ WUni | |
3 | wunex | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑢 ∈ WUni 𝐴 ⊆ 𝑢 ) | |
4 | rabn0 | ⊢ ( { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ≠ ∅ ↔ ∃ 𝑢 ∈ WUni 𝐴 ⊆ 𝑢 ) | |
5 | 3 4 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ≠ ∅ ) |
6 | intwun | ⊢ ( ( { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ⊆ WUni ∧ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ≠ ∅ ) → ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ∈ WUni ) | |
7 | 2 5 6 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ∈ WUni ) |
8 | 1 7 | eqeltrd | ⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni ) |