Metamath Proof Explorer


Theorem wuncidm

Description: The weak universe closure is idempotent. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuncidm ( 𝐴𝑉 → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) = ( wUniCl ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 wunccl ( 𝐴𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni )
2 ssid ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ 𝐴 )
3 wuncss ( ( ( wUniCl ‘ 𝐴 ) ∈ WUni ∧ ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) ⊆ ( wUniCl ‘ 𝐴 ) )
4 1 2 3 sylancl ( 𝐴𝑉 → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) ⊆ ( wUniCl ‘ 𝐴 ) )
5 wuncid ( ( wUniCl ‘ 𝐴 ) ∈ WUni → ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) )
6 1 5 syl ( 𝐴𝑉 → ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) )
7 4 6 eqssd ( 𝐴𝑉 → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) = ( wUniCl ‘ 𝐴 ) )